Search results
Results from the WOW.Com Content Network
Commercially available nitric acid is an azeotrope with water at a concentration of 68% HNO 3. This solution has a boiling temperature of 120.5 °C (249 °F) at 1 atm. It is known as "concentrated nitric acid". The azeotrope of nitric acid and water is a colourless liquid at room temperature.
J.A. Dean (ed.), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.4, Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
K b & K f [1] Ethylene glycol: 1.11 197.3 2.26 −12.9 –3.11 K b & K f [1] Formic acid: 101.0 2.4 8.0 –2.77 K b & K f [1] Naphthalene: 217.9 78.2 –6.80 Nitrobenzene: 210.8 5.24 5.7 –7.00 Phenol: 181.75 3.60 43.0 –7.27 K f [2] K b [1] Water: 100.00 0.512 0.00 –1.86 K b & K f [2] Ethyl Acetate: 77.1 [5] Acetic Anhydride: 139.0 [6 ...
The third column is the heat content of each gram of the liquid phase relative to water at 0 °C. The fourth column is the heat of vaporization of each gram of liquid that changes to vapor. The fifth column is the work PΔV done by each gram of liquid that changes to vapor. The sixth column is the density of the vapor.
David R. Lide (ed), CRC Handbook of Chemistry and Physics, 84th Edition.CRC Press. Boca Raton, Florida, 2003; Section 6, Fluid Properties; Vapor Pressure Uncertainties of several degrees should generally be assumed.
Temperature-dependency of the heats of vaporization for water, methanol, benzene, and acetone. In thermodynamics, the enthalpy of vaporization (symbol ∆H vap), also known as the (latent) heat of vaporization or heat of evaporation, is the amount of energy that must be added to a liquid substance to transform a quantity of that substance into a gas.
Note that the especially high molar values, as for paraffin, gasoline, water and ammonia, result from calculating specific heats in terms of moles of molecules. If specific heat is expressed per mole of atoms for these substances, none of the constant-volume values exceed, to any large extent, the theoretical Dulong–Petit limit of 25 J⋅mol ...