Search results
Results from the WOW.Com Content Network
Explicit specialization is used when the behavior of a function or class for particular choices of the template parameters must deviate from the generic behavior: that is, from the code generated by the main template, or templates. For example, the template definition below defines a specific implementation of max() for arguments of type const ...
Quite contrary to C++, in the functional programming language Haskell the void type denotes the empty type, which has no inhabitants . A function into the void type does not return results, and a side-effectful program with type signature IO Void does not terminate, or crashes. In particular, there are no total functions into the void type.
The variadic template feature of C++ was designed by Douglas Gregor and Jaakko Järvi [1] [2] and was later standardized in C++11. Prior to C++11, templates (classes and functions) could only take a fixed number of arguments, which had to be specified when a template was first declared.
The curiously recurring template pattern (CRTP) is an idiom, originally in C++, in which a class X derives from a class template instantiation using X itself as a template argument. [1] More generally it is known as F-bound polymorphism , and it is a form of F -bounded quantification .
The following is a declaration of the concept "equality_comparable" from the <concepts> header of a C++20 standard library. This concept is satisfied by any type T such that for lvalues a and b of type T, the expressions a==b and a!=b as well as the reverse b==a and b!=a compile, and their results are convertible to a type that satisfies the concept "boolean-testable":
Modern C++ Design: Generic Programming and Design Patterns Applied is a book written by Andrei Alexandrescu, published in 2001 by Addison-Wesley. It has been regarded as "one of the most important C++ books" by Scott Meyers. [1] The book makes use of and explores a C++ programming technique called template metaprogramming. While Alexandrescu ...
malloc returns a void pointer (void *), which indicates that it is a pointer to a region of unknown data type. The use of casting is required in C++ due to the strong type system, whereas this is not the case in C. One may "cast" (see type conversion) this pointer to a specific type:
Notice that the type of the result can be regarded as everything past the first supplied argument. This is a consequence of currying, which is made possible by Haskell's support for first-class functions; this function requires two inputs where one argument is supplied and the function is "curried" to produce a function for the argument not supplied.