enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Animal echolocation - Wikipedia

    en.wikipedia.org/wiki/Animal_echolocation

    The term echolocation was coined by 1944 by the American zoologist Donald Griffin, who, with Robert Galambos, first demonstrated the phenomenon in bats. [1] [2] As Griffin described in his book, [3] the 18th century Italian scientist Lazzaro Spallanzani had, by means of a series of elaborate experiments, concluded that when bats fly at night, they rely on some sense besides vision, but he did ...

  3. Human echolocation - Wikipedia

    en.wikipedia.org/wiki/Human_echolocation

    Human echolocation is the ability of humans to detect objects in their environment by sensing echoes from those objects, by actively creating sounds: for example, by tapping their canes, lightly stomping their foot, snapping their fingers, or making clicking noises with their mouths.

  4. Ultrasound avoidance - Wikipedia

    en.wikipedia.org/wiki/Ultrasound_avoidance

    Ultrasound avoidance is an escape or avoidance reflex displayed by certain animal species that are preyed upon by echolocating predators. [1] Ultrasound avoidance is known for several groups of insects that have independently evolved mechanisms for ultrasonic hearing.

  5. Doppler shift compensation - Wikipedia

    en.wikipedia.org/wiki/Doppler_shift_compensation

    These types of echolocation pulses afford the bat the ability to classify, detect flutter (e.g. the fluttering wings of insects), and determine velocity information about the target. [5] Both CF and CF-FM bats use the Doppler shift compensation mechanism in order to maximize the efficiency of their echolocation behavior.

  6. Bat - Wikipedia

    en.wikipedia.org/wiki/Bat

    Principle of bat echolocation: orange is the call and green is the echo. In low-duty cycle echolocation, bats can separate their calls and returning echoes by time. They have to time their short calls to finish before echoes return. [95] The delay of the returning echoes allows the bat to estimate the range to their prey. [93]

  7. Echolocation - Wikipedia

    en.wikipedia.org/wiki/Echolocation

    Animal echolocation, non-human animals emitting sound waves and listening to the echo in order to locate objects or navigate. Human echolocation, the use of sound by people to navigate. Sonar (sound navigation and ranging), the use of sound on water or underwater, to navigate or to locate other watercraft, usually by submarines.

  8. Marine mammals and sonar - Wikipedia

    en.wikipedia.org/wiki/Marine_mammals_and_sonar

    Before extensive research on whale vocalizations was completed, the low-frequency pulses emitted by some species of whales were often not correctly attributed to them. Dr Payne wrote: "Before it was shown that fin whales were the cause [of powerful sounds], no one could take seriously the idea that such regular, loud, low, and relatively pure frequency tones were coming from within the ocean ...

  9. Echolocation jamming - Wikipedia

    en.wikipedia.org/wiki/Echolocation_jamming

    Jamming occurs when non-target sounds interfere with target echoes. Jamming can be purposeful or inadvertent, and can be caused by the echolocation system itself, other echolocating animals, prey, or humans. Echolocating animals have evolved to minimize jamming, however; echolocation avoidance behaviors are not always successful.