enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Marginal distribution - Wikipedia

    en.wikipedia.org/wiki/Marginal_distribution

    Given two continuous random variables X and Y whose joint distribution is known, then the marginal probability density function can be obtained by integrating the joint probability distribution, f, over Y, and vice versa. That is

  3. Order statistic - Wikipedia

    en.wikipedia.org/wiki/Order_statistic

    In this section we show that the order statistics of the uniform distribution on the unit interval have marginal distributions belonging to the beta distribution family. We also give a simple method to derive the joint distribution of any number of order statistics, and finally translate these results to arbitrary continuous distributions using ...

  4. Joint probability distribution - Wikipedia

    en.wikipedia.org/wiki/Joint_probability_distribution

    In general, the marginal probability distribution of X can be determined from the joint probability distribution of X and other random variables. If the joint probability density function of random variable X and Y is , (,), the marginal probability density function of X and Y, which defines the marginal distribution, is given by: =, (,)

  5. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    It represents a discrete probability distribution concentrated at 0 — a degenerate distribution — it is a Distribution (mathematics) in the generalized function sense; but the notation treats it as if it were a continuous distribution. The Kent distribution on the two-dimensional sphere.

  6. Multivariate random variable - Wikipedia

    en.wikipedia.org/wiki/Multivariate_random_variable

    The distributions of each of the component random variables are called marginal distributions. The conditional probability distribution of X i {\displaystyle X_{i}} given X j {\displaystyle X_{j}} is the probability distribution of X i {\displaystyle X_{i}} when X j {\displaystyle X_{j}} is known to be a particular value.

  7. Law of total probability - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_probability

    The law of total probability extends to the case of conditioning on events generated by continuous random variables. Let (,,) be a probability space.Suppose is a random variable with distribution function , and an event on (,,).

  8. Conditional probability distribution - Wikipedia

    en.wikipedia.org/wiki/Conditional_probability...

    The conditional distribution contrasts with the marginal distribution of a random variable, which is its distribution without reference to the value of the other variable. If the conditional distribution of Y {\displaystyle Y} given X {\displaystyle X} is a continuous distribution , then its probability density function is known as the ...

  9. Copula (statistics) - Wikipedia

    en.wikipedia.org/wiki/Copula_(statistics)

    In probability theory and statistics, a copula is a multivariate cumulative distribution function for which the marginal probability distribution of each variable is uniform on the interval [0, 1]. Copulas are used to describe/model the dependence (inter-correlation) between random variables . [ 1 ]