enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dynamic similarity (Reynolds and Womersley numbers)

    en.wikipedia.org/wiki/Dynamic_similarity...

    The Reynolds and Womersley Numbers are also used to calculate the thicknesses of the boundary layers that can form from the fluid flow’s viscous effects. The Reynolds number is used to calculate the convective inertial boundary layer thickness that can form, and the Womersley number is used to calculate the transient inertial boundary thickness that can form.

  3. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    The following formula describes the viscous stress tensor for the special case of Stokes flow. It is needed in the calculation of the force acting on the particle. In Cartesian coordinates the vector-gradient is identical to the Jacobian matrix. The matrix I represents the identity-matrix.

  4. Darcy friction factor formulae - Wikipedia

    en.wikipedia.org/wiki/Darcy_friction_factor_formulae

    If more than one formula is applicable in the flow regime under consideration, the choice of formula may be influenced by one or more of the following: Required accuracy; Speed of computation required; Available computational technology: calculator (minimize keystrokes) spreadsheet (single-cell formula) programming/scripting language (subroutine).

  5. Oseen equations - Wikipedia

    en.wikipedia.org/wiki/Oseen_equations

    In fluid dynamics, the Oseen equations (or Oseen flow) describe the flow of a viscous and incompressible fluid at small Reynolds numbers, as formulated by Carl Wilhelm Oseen in 1910. Oseen flow is an improved description of these flows, as compared to Stokes flow , with the (partial) inclusion of convective acceleration .

  6. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    The Reynolds number is the ratio of inertial forces to viscous forces within a fluid that is subjected to relative internal movement due to different fluid velocities. A region where these forces change behavior is known as a boundary layer, such as the bounding surface in the interior of a pipe.

  7. Langevin equation - Wikipedia

    en.wikipedia.org/wiki/Langevin_equation

    The force acting on the particle is written as a sum of a viscous force proportional to the particle's velocity (Stokes' law), and a noise term representing the effect of the collisions with the molecules of the fluid.

  8. Womersley number - Wikipedia

    en.wikipedia.org/wiki/Womersley_number

    The Womersley number, usually denoted , is defined by the relation = = = =, where is an appropriate length scale (for example the radius of a pipe), is the angular frequency of the oscillations, and , , are the kinematic viscosity, density, and dynamic viscosity of the fluid, respectively. [2]

  9. Grashof number - Wikipedia

    en.wikipedia.org/wiki/Grashof_number

    Usually the density decreases due to an increase in temperature and causes the fluid to rise. This motion is caused by the buoyancy force. The major force that resists the motion is the viscous force. The Grashof number is a way to quantify the opposing forces. [3] The Grashof number is: