Search results
Results from the WOW.Com Content Network
As Valtr (1998) showed, the set system derived from an art gallery problem has bounded VC dimension, allowing the application of set cover algorithms based on ε-nets whose approximation ratio is the logarithm of the optimal number of guards rather than of the number of polygon vertices. [12]
The next stage of muon g − 2 research was conducted at the Brookhaven National Laboratory (BNL) Alternating Gradient Synchrotron; the experiment was known as (BNL) Muon E821 experiment, [17] but it has also been called "muon experiment at BNL" or "(muon) g − 2 at BNL" etc. [7] Brookhaven's Muon g − 2 experiment was constructed from 1989 to 1996 and collected data from 1997 to 2001.
In the 1980s, it became obvious that an update to the Deal-Grove model is necessary to model the aforementioned thin oxides (self-limiting cases). One such approach that more accurately models thin oxides is the Massoud model from 1985 [2]. The Massoud model is analytical and based on parallel oxidation mechanisms.
If the operator was self-adjoint, =, the direct state equation and the adjoint state equation would have the same left-hand side. In the goal of never inverting a matrix, which is a very slow process numerically, a LU decomposition can be used instead to solve the state equation, in O ( m 3 ) {\displaystyle O(m^{3})} operations for the ...
In atmospheric science, an atmospheric model is a mathematical model constructed around the full set of primitive, dynamical equations which govern atmospheric motions. It can supplement these equations with parameterizations for turbulent diffusion, radiation , moist processes ( clouds and precipitation ), heat exchange , soil , vegetation ...
In 1964 they published an article titled "The applicability of the third integral of motion: Some numerical experiments". [1] Their original idea was to find a third integral of motion in a galactic dynamics. For that purpose they took a simplified two-dimensional nonlinear rotational symmetric potential and found that the third integral ...
In physics, the Spalart–Allmaras model is a one-equation model that solves a modelled transport equation for the kinematic eddy turbulent viscosity.The Spalart–Allmaras model was designed specifically for aerospace applications involving wall-bounded flows and has been shown to give good results for boundary layers subjected to adverse pressure gradients.
The quasi-geostrophic equations are approximations to the shallow water equations in the limit of small Rossby number, so that inertial forces are an order of magnitude smaller than the Coriolis and pressure forces. If the Rossby number is equal to zero then we recover geostrophic flow.