Search results
Results from the WOW.Com Content Network
In astronomy, air mass or airmass is a measure of the amount of air along the line of sight when observing a star or other celestial source from below Earth's atmosphere . It is formulated as the integral of air density along the light ray .
An air mass originating over northern Siberia in winter may be indicated as "cA". [3] The stability of an air mass may be shown using a third letter, either "k" (air mass colder than the surface below it) or "w" (air mass warmer than the surface below it). [3] An example of this might be a polar air mass blowing over the Gulf Stream, denoted as ...
Conventional mass is defined as follows: "For a mass at 20 °C, ‘conventional mass’ is the mass of a reference standard of density 8,000 kg/m 3 which it balances in air with a density of 1.2 kg/m 3."
The Indian Standard Time was adopted on 1 January 1906 during the British era with the phasing out of its precursor Madras Time (Railway Time), [2] and after Independence in 1947, the Union government established IST as the official time for the whole country, although Kolkata and Mumbai retained their own local time (known as Calcutta Time and Bombay Time) until 1948 and 1955, respectively. [3]
is the molar mass of dry air, approximately 0.028 9652 in kg⋅mol −1. [note 1] is the Boltzmann constant, 1.380 649 × 10 −23 in J⋅K −1 [note 1] is the molecular mass of dry air, approximately 4.81 × 10 −26 in kg. [note 1]
If a first body of mass m A is placed at a distance r (center of mass to center of mass) from a second body of mass m B, each body is subject to an attractive force F g = Gm A m B /r 2, where G = 6.67 × 10 −11 N⋅kg −2 ⋅m 2 is the "universal gravitational constant". This is sometimes referred to as gravitational mass.
The air mass coefficient can be used to help characterize the solar spectrum after solar radiation has traveled through the atmosphere. The air mass coefficient is commonly used to characterize the performance of solar cells under standardized conditions, and is often referred to using the syntax "AM" followed by a number.
Mass–energy equivalence states that all objects having mass, or massive objects, have a corresponding intrinsic energy, even when they are stationary.In the rest frame of an object, where by definition it is motionless and so has no momentum, the mass and energy are equal or they differ only by a constant factor, the speed of light squared (c 2).