enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Numerical stability - Wikipedia

    en.wikipedia.org/wiki/Numerical_stability

    In the mathematical subfield of numerical analysis, numerical stability is a generally desirable property of numerical algorithms. The precise definition of stability depends on the context. One is numerical linear algebra and the other is algorithms for solving ordinary and partial differential equations by discrete approximation.

  3. Lanczos algorithm - Wikipedia

    en.wikipedia.org/wiki/Lanczos_algorithm

    Numerical stability is the central criterion for judging the usefulness of implementing an algorithm on a computer with roundoff. For the Lanczos algorithm, it can be proved that with exact arithmetic , the set of vectors v 1 , v 2 , ⋯ , v m + 1 {\displaystyle v_{1},v_{2},\cdots ,v_{m+1}} constructs an orthonormal basis, and the eigenvalues ...

  4. Algorithms for calculating variance - Wikipedia

    en.wikipedia.org/wiki/Algorithms_for_calculating...

    Based on this sample, the estimated population mean is 10, and the unbiased estimate of population variance is 30. Both the naïve algorithm and two-pass algorithm compute these values correctly. Next consider the sample (10 8 + 4, 10 8 + 7, 10 8 + 13, 10 8 + 16), which gives rise to the same estimated variance as the first sample. The two-pass ...

  5. Von Neumann stability analysis - Wikipedia

    en.wikipedia.org/wiki/Von_Neumann_stability_analysis

    The stability of numerical schemes can be investigated by performing von Neumann stability analysis. For time-dependent problems, stability guarantees that the numerical method produces a bounded solution whenever the solution of the exact differential equation is bounded.

  6. Toeplitz matrix - Wikipedia

    en.wikipedia.org/wiki/Toeplitz_matrix

    [1] [2] Variants of the latter have been shown to be weakly stable (i.e. they exhibit numerical stability for well-conditioned linear systems). [3] The algorithms can also be used to find the determinant of a Toeplitz matrix in O ( n 2 ) {\displaystyle O(n^{2})} time.

  7. Zero stability - Wikipedia

    en.wikipedia.org/wiki/Zero_stability

    Zero-stability, also known as D-stability in honor of Germund Dahlquist, [1] refers to the stability of a numerical scheme applied to the simple initial value problem ′ =.

  8. Biconjugate gradient stabilized method - Wikipedia

    en.wikipedia.org/wiki/Biconjugate_gradient...

    In numerical linear algebra, the biconjugate gradient stabilized method, often abbreviated as BiCGSTAB, is an iterative method developed by H. A. van der Vorst for the numerical solution of nonsymmetric linear systems.

  9. Log probability - Wikipedia

    en.wikipedia.org/wiki/Log_probability

    The use of log probabilities improves numerical stability, when the probabilities are very small, because of the way in which computers approximate real numbers. [1] Simplicity. Many probability distributions have an exponential form. Taking the log of these distributions eliminates the exponential function, unwrapping the exponent.