Search results
Results from the WOW.Com Content Network
To generate enough lift at a given wingspan, the aircraft designer must increase wing area by lengthening the chord, thus lowering the aspect ratio. This limits the Airbus A380 to 80m wide with an aspect ratio of 7.8, while the Boeing 787 or Airbus A350 have an aspect ratio of 9.5, influencing flight economy.
The natural outcome of this requirement is a wing design that is thin and wide, which has a low thickness-to-chord ratio. At lower speeds, undesirable parasitic drag is largely a function of the total surface area , which suggests using a wing with minimum chord, leading to the high aspect ratios seen on light aircraft and regional airliners .
The Vortex lattice method, (VLM), is a numerical method used in computational fluid dynamics, mainly in the early stages of aircraft design and in aerodynamic education at university level. The VLM models the lifting surfaces, such as a wing, of an aircraft as an infinitely thin sheet of discrete vortices to compute lift and induced drag.
An early example of the closed wing was on the Blériot III aircraft, built in 1906 by Louis Blériot and Gabriel Voisin. The lifting surfaces comprised two annular wings mounted in tandem. The later Blériot IV replaced the forward annular wing with a biplane and added a canard foreplane to make it a three-surface aircraft. It was able to ...
An airfoil is said to have a positive camber if its upper surface (or in the case of a driving turbine or propeller blade its forward surface) is the more convex. Camber is a complex property that can be more fully characterized by an airfoil's camber line , the curve Z(x) that is halfway between the upper and lower surfaces, and thickness ...
A fixed-wing aircraft may have more than one wing plane, stacked one above another: Biplane: two wing planes of similar size, stacked one above the other. The biplane is inherently lighter and stronger than a monoplane and was the most common configuration until the 1930s. The very first Wright Flyer I was a biplane.
Nose, wing and ventral strakes Vortices over the wing strakes of an F/A-18E Super Hornet. In aviation, a strake is an aerodynamic surface generally mounted on the fuselage of an aircraft to improve the flight characteristics either by controlling the airflow (acting as large vortex generators) or by a simple stabilising effect.
The problem is then an incompressible low-speed aerodynamics problem. When the density is allowed to vary, the flow is called compressible. In air, compressibility effects are usually ignored when the Mach number in the flow does not exceed 0.3 (about 335 feet (102 m) per second or 228 miles (366 km) per hour at 60 °F (16 °C)).