enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equivalence relation - Wikipedia

    en.wikipedia.org/wiki/Equivalence_relation

    The relation "≥" between real numbers is reflexive and transitive, but not symmetric. For example, 7 ≥ 5 but not 5 ≥ 7. The relation "has a common factor greater than 1 with" between natural numbers greater than 1, is reflexive and symmetric, but not transitive. For example, the natural numbers 2 and 6 have a common factor greater than 1 ...

  3. Relation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Relation_(mathematics)

    A relation that is reflexive, symmetric, and transitive. It is also a relation that is symmetric, transitive, and serial, since these properties imply reflexivity. Orderings: Partial order A relation that is reflexive, antisymmetric, and transitive. Strict partial order A relation that is irreflexive, asymmetric, and transitive. Total order

  4. Symmetric relation - Wikipedia

    en.wikipedia.org/wiki/Symmetric_relation

    Symmetric and antisymmetric relations. By definition, a nonempty relation cannot be both symmetric and asymmetric (where if a is related to b, then b cannot be related to a (in the same way)). However, a relation can be neither symmetric nor asymmetric, which is the case for "is less than or equal to" and "preys on").

  5. Reflexive relation - Wikipedia

    en.wikipedia.org/wiki/Reflexive_relation

    An example of a left quasi-reflexive relation is a left Euclidean relation, which is always left quasi-reflexive but not necessarily right quasi-reflexive, and thus not necessarily quasi-reflexive. An example of a coreflexive relation is the relation on integers in which each odd number is related to itself and there are no other relations. The ...

  6. Transitive relation - Wikipedia

    en.wikipedia.org/wiki/Transitive_relation

    However, there is a formula for finding the number of relations that are simultaneously reflexive, symmetric, and transitive – in other words, equivalence relations – (sequence A000110 in the OEIS), those that are symmetric and transitive, those that are symmetric, transitive, and antisymmetric, and those that are total, transitive, and ...

  7. Preorder - Wikipedia

    en.wikipedia.org/wiki/Preorder

    The converse is not true: most directed graphs are neither reflexive nor transitive. A preorder that is antisymmetric no longer has cycles; it is a partial order, and corresponds to a directed acyclic graph. A preorder that is symmetric is an equivalence relation; it can be thought of as having lost the direction markers on the edges of the graph.

  8. Transitive closure - Wikipedia

    en.wikipedia.org/wiki/Transitive_closure

    This means that one cannot write a formula using predicate symbols R and T that will be satisfied in any model if and only if T is the transitive closure of R. In finite model theory , first-order logic (FO) extended with a transitive closure operator is usually called transitive closure logic , and abbreviated FO(TC) or just TC.

  9. Closure (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Closure_(mathematics)

    It follows that the reflexive transitive closure of a relation is the smallest preorder containing it. Similarly, the reflexive transitive symmetric closure or equivalence closure of a relation is the smallest equivalence relation that contains it.