Search results
Results from the WOW.Com Content Network
This is a torispherical head also named Semi ellipsoidal head (According to DIN 28013). The radius of the dish is 80% of the diameter of the cylinder ( r 1 = 0.8 × D o {\displaystyle r_{1}=0.8\times Do} ).
Plane section of an ellipsoid (see example) Given: Ellipsoid x 2 / a 2 + y 2 / b 2 + z 2 / c 2 = 1 and the plane with equation n x x + n y y + n z z = d, which have an ellipse in common. Wanted: Three vectors f 0 (center) and f 1, f 2 (conjugate vectors), such that the ellipse can be represented by the parametric equation
Using ideal gas equation of state for constant temperature process (i.e., / is constant) and the conservation of mass flow rate (i.e., ˙ = is constant), the relation Qp = Q 1 p 1 = Q 2 p 2 can be obtained. Over a short section of the pipe, the gas flowing through the pipe can be assumed to be incompressible so that Poiseuille law can be used ...
The basic quantities describing a sphere (meaning a 2-sphere, a 2-dimensional surface inside 3-dimensional space) will be denoted by the following variables r {\displaystyle r} is the radius, C = 2 π r {\displaystyle C=2\pi r} is the circumference (the length of any one of its great circles ),
Example 3.5 and p.116 ... when ρ is the fluid's mass density – equal to density times volume, so ρA 1 s 1 and ρA 2 s 2. ... This is the head equation derived ...
Consider the linear subspace of the n-dimensional Euclidean space R n that is spanned by a collection of linearly independent vectors , …,. To find the volume element of the subspace, it is useful to know the fact from linear algebra that the volume of the parallelepiped spanned by the is the square root of the determinant of the Gramian matrix of the : (), = ….
A disadvantage of these vessels is that greater diameters are more expensive, so that for example the most economic shape of a 1,000 litres (35 cu ft), 250 bars (3,600 psi) pressure vessel might be a diameter of 91.44 centimetres (36 in) and a length of 1.7018 metres (67 in) including the 2:1 semi-elliptical domed end caps.
Without explicitly solving these equations, the motion can be described geometrically as follows: [1] The rigid body's motion is entirely determined by the motion of its inertia ellipsoid , which is rigidly fixed to the rigid body like a coordinate frame.