enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    The matrix exponential of another matrix (matrix-matrix exponential), [24] is defined as = ⁡ = ⁡ for any normal and non-singular n×n matrix X, and any complex n×n matrix Y. For matrix-matrix exponentials, there is a distinction between the left exponential Y X and the right exponential X Y , because the multiplication operator for matrix ...

  3. Commutation matrix - Wikipedia

    en.wikipedia.org/wiki/Commutation_matrix

    Replacing A with A T in the definition of the commutation matrix shows that K (m,n) = (K (n,m)) T. Therefore, in the special case of m = n the commutation matrix is an involution and symmetric. The main use of the commutation matrix, and the source of its name, is to commute the Kronecker product: for every m × n matrix A and every r × q ...

  4. Matrix equivalence - Wikipedia

    en.wikipedia.org/wiki/Matrix_equivalence

    In linear algebra, two rectangular m-by-n matrices A and B are called equivalent if = for some invertible n-by-n matrix P and some invertible m-by-m matrix Q.Equivalent matrices represent the same linear transformation V → W under two different choices of a pair of bases of V and W, with P and Q being the change of basis matrices in V and W respectively.

  5. Mathematical visualization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_visualization

    The Mandelbrot set, one of the most famous examples of mathematical visualization.. Mathematical phenomena can be understood and explored via visualization.Classically, this consisted of two-dimensional drawings or building three-dimensional models (particularly plaster models in the 19th and early 20th century).

  6. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    When A is an invertible matrix there is a matrix A −1 that represents a transformation that "undoes" A since its composition with A is the identity matrix. In some practical applications, inversion can be computed using general inversion algorithms or by performing inverse operations (that have obvious geometric interpretation, like rotating ...

  7. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    Matrices can be used to compactly write and work with multiple linear equations, that is, systems of linear equations. For example, if A is an m×n matrix, x designates a column vector (that is, n×1-matrix) of n variables x 1, x 2, ..., x n, and b is an m×1-column vector, then the matrix equation =

  8. Magnus expansion - Wikipedia

    en.wikipedia.org/wiki/Magnus_expansion

    When n = 1, the solution is given as a product integral = ⁡ (()). This is still valid for n > 1 if the matrix A(t) satisfies A(t 1) A(t 2) = A(t 2) A(t 1) for any pair of values of t, t 1 and t 2. In particular, this is the case if the matrix A is independent of t. In the general case, however, the expression above is no longer the solution ...

  9. Coefficient matrix - Wikipedia

    en.wikipedia.org/wiki/Coefficient_matrix

    By the Rouché–Capelli theorem, the system of equations is inconsistent, meaning it has no solutions, if the rank of the augmented matrix (the coefficient matrix augmented with an additional column consisting of the vector b) is greater than the rank of the coefficient matrix. If, on the other hand, the ranks of these two matrices are equal ...