enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponential stability - Wikipedia

    en.wikipedia.org/wiki/Exponential_stability

    In control theory, a continuous linear time-invariant system (LTI) is exponentially stable if and only if the system has eigenvalues (i.e., the poles of input-to-output systems) with strictly negative real parts (i.e., in the left half of the complex plane). [1]

  3. Lyapunov exponent - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_exponent

    For a dynamical system with evolution equation ˙ = in an n–dimensional phase space, the spectrum of Lyapunov exponents {,, …,}, in general, depends on the starting point . However, we will usually be interested in the attractor (or attractors) of a dynamical system, and there will normally be one set of exponents associated with each ...

  4. Stability theory - Wikipedia

    en.wikipedia.org/wiki/Stability_theory

    In mathematics, stability theory addresses the stability of solutions of differential equations and of trajectories of dynamical systems under small perturbations of initial conditions. The heat equation , for example, is a stable partial differential equation because small perturbations of initial data lead to small variations in temperature ...

  5. Linear stability - Wikipedia

    en.wikipedia.org/wiki/Linear_stability

    In mathematics, in the theory of differential equations and dynamical systems, a particular stationary or quasistationary solution to a nonlinear system is called linearly unstable if the linearization of the equation at this solution has the form / =, where r is the perturbation to the steady state, A is a linear operator whose spectrum contains eigenvalues with positive real part.

  6. Lyapunov function - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_function

    A Lyapunov function for an autonomous dynamical system {: ˙ = ()with an equilibrium point at = is a scalar function: that is continuous, has continuous first derivatives, is strictly positive for , and for which the time derivative ˙ = is non positive (these conditions are required on some region containing the origin).

  7. Lyapunov equation - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_equation

    The Lyapunov equation, named after the Russian mathematician Aleksandr Lyapunov, is a matrix equation used in the stability analysis of linear dynamical systems. [ 1 ] [ 2 ] In particular, the discrete-time Lyapunov equation (also known as Stein equation ) for X {\displaystyle X} is

  8. Control-Lyapunov function - Wikipedia

    en.wikipedia.org/wiki/Control-Lyapunov_function

    For asymptotic stability, the state is also required to converge to =. A control-Lyapunov function is used to test whether a system is asymptotically stabilizable , that is whether for any state x there exists a control u ( x , t ) {\displaystyle u(x,t)} such that the system can be brought to the zero state asymptotically by applying the ...

  9. Numerical stability - Wikipedia

    en.wikipedia.org/wiki/Numerical_stability

    Computing the square root of 2 (which is roughly 1.41421) is a well-posed problem. Many algorithms solve this problem by starting with an initial approximation x 0 to , for instance x 0 = 1.4, and then computing improved guesses x 1, x 2, etc. One such method is the famous Babylonian method, which is given by x k+1 = (x k + 2/x k)/2.