Search results
Results from the WOW.Com Content Network
n = 1 that yield a minimax approximation or bound for the closely related Q-function: Q(x) ≈ Q̃(x), Q(x) ≤ Q̃(x), or Q(x) ≥ Q̃(x) for x ≥ 0. The coefficients {(a n,b n)} N n = 1 for many variations of the exponential approximations and bounds up to N = 25 have been released to open access as a comprehensive dataset. [16]
The relation "is equivalent to " is reflexive, symmetric (implies ), and transitive and thus defines an equivalence relation on the set of all norms on . The norms p {\displaystyle p} and q {\displaystyle q} are equivalent if and only if they induce the same topology on X . {\displaystyle X.} [ 8 ] Any two norms on a finite-dimensional space ...
The Q-function can be generalized to higher dimensions: [14] = (),where (,) follows the multivariate normal distribution with covariance and the threshold is of the form = for some positive vector > and positive constant >.
For 0 < q < 1, the series converges to a function F(x) on an interval (0,A] if |f(x)x α | is bounded on the interval (0, A] for some 0 ≤ α < 1. The q-integral is a Riemann–Stieltjes integral with respect to a step function having infinitely many points of increase at the points q j..The jump at the point q j is q j. Calling this step ...
This means that the rank at the critical point is lower than the rank at some neighbour point. In other words, let k be the maximal dimension of the open balls contained in the image of f; then a point is critical if all minors of rank k of f are zero. In the case where m = n = k, a point is critical if the Jacobian determinant is zero.
According to the correspondence principle, in certain limits the quantum equations of states must approach Hamilton's equations of motion.The latter state the following relation between the generalized coordinate q (e.g. position) and the generalized momentum p: {˙ = = {,}; ˙ = = {,}.
The curl of a vector field F, denoted by curl F, or , or rot F, is an operator that maps C k functions in R 3 to C k−1 functions in R 3, and in particular, it maps continuously differentiable functions R 3 → R 3 to continuous functions R 3 → R 3. It can be defined in several ways, to be mentioned below:
A fundamental domain of the ring of integers of the field K obtained from Q by adjoining a root of x 3 − x 2 − 2x + 1. This fundamental domain sits inside K ⊗ Q R. The discriminant of K is 49 = 7 2. Accordingly, the volume of the fundamental domain is 7 and K is only ramified at 7.