Search results
Results from the WOW.Com Content Network
Directional statistics (also circular statistics or spherical statistics) is the subdiscipline of statistics that deals with directions (unit vectors in Euclidean space, R n), axes (lines through the origin in R n) or rotations in R n. More generally, directional statistics deals with observations on compact Riemannian manifolds including the ...
A classification model (classifier or diagnosis [7]) is a mapping of instances between certain classes/groups.Because the classifier or diagnosis result can be an arbitrary real value (continuous output), the classifier boundary between classes must be determined by a threshold value (for instance, to determine whether a person has hypertension based on a blood pressure measure).
The characteristic function of a real-valued random variable always exists, since it is an integral of a bounded continuous function over a space whose measure is finite. A characteristic function is uniformly continuous on the entire space. It is non-vanishing in a region around zero: φ(0) = 1. It is bounded: | φ(t) | ≤ 1.
In mathematics, in particular in measure theory, there are different notions of distribution function and it is important to understand the context in which they are used (properties of functions, or properties of measures). Distribution functions (in the sense of measure theory) are a generalization of distribution functions (in the sense of ...
On the other hand, a scoring function [2] provides a summary measure for the evaluation of point predictions, i.e. one predicts a property or functional (), like the expectation or the median. The average logarithmic score of 10 points i.i.d. sampled from a standard normal distribution (blue histogram), evaluated on a variety of distributions ...
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
Classically, a confidence distribution is defined by inverting the upper limits of a series of lower-sided confidence intervals. [15] [16] [page needed] In particular, For every α in (0, 1), let (−∞, ξ n (α)] be a 100α% lower-side confidence interval for θ, where ξ n (α) = ξ n (X n,α) is continuous and increasing in α for each sample X n.
In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the ...