Search results
Results from the WOW.Com Content Network
The unit circle can be specified as the level curve f(x, y) = 1 of the function f(x, y) = x 2 + y 2.Around point A, y can be expressed as a function y(x).In this example this function can be written explicitly as () =; in many cases no such explicit expression exists, but one can still refer to the implicit function y(x).
The implicit function theorem of more than two real variables deals with the continuity and differentiability of the function, as follows. [4] Let ϕ(x 1, x 2, …, x n) be a continuous function with continuous first order partial derivatives, and let ϕ evaluated at a point (a, b) = (a 1, a 2, …, a n, b) be zero:
An implicit function is a function that is defined by an implicit equation, that relates one of the variables, considered as the value of the function, with the others considered as the arguments. [ 1 ] : 204–206 For example, the equation x 2 + y 2 − 1 = 0 {\displaystyle x^{2}+y^{2}-1=0} of the unit circle defines y as an implicit function ...
In economics, comparative statics is the comparison of two different economic outcomes, before and after a change in some underlying exogenous parameter. [ 1 ] As a type of static analysis it compares two different equilibrium states, after the process of adjustment (if any).
Traditionally, comparative results in economics are obtained using the Implicit Function Theorem, an approach that requires the concavity and differentiability of the objective function as well as the interiority and uniqueness of the optimal solution. The methods of monotone comparative statics typically dispense with these assumptions.
In general, implicit curves fail the vertical line test (meaning that some values of x are associated with more than one value of y) and so are not necessarily graphs of functions. However, the implicit function theorem gives conditions under which an implicit curve locally is given by the graph of a function (so in particular it has no self ...
Theorem — Any closed set in occurs as the solution set of for some smooth function :. Any parameterized curve can also be defined as an implicit curve, and the classification of singular points of curves can be studied as a classification of singular points of an algebraic variety .
This means that the tangent of the curve is parallel to the y-axis, and that, at this point, g does not define an implicit function from x to y (see implicit function theorem). If (x 0, y 0) is such a critical point, then x 0 is the corresponding critical value.