Search results
Results from the WOW.Com Content Network
The characteristic function of a real-valued random variable always exists, since it is an integral of a bounded continuous function over a space whose measure is finite. A characteristic function is uniformly continuous on the entire space. It is non-vanishing in a region around zero: φ(0) = 1. It is bounded: | φ(t) | ≤ 1.
In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the ...
The f-divergences are probably the best-known way to measure dissimilarity of probability distributions. It has been shown [ 5 ] : sec. 2 that the only functions which are both IPMs and f -divergences are of the form c TV ( P , Q ) {\displaystyle c\,\operatorname {TV} (P,Q)} , where c ∈ [ 0 , ∞ ] {\displaystyle c\in [0,\infty ]} and TV ...
In mathematics, in particular in measure theory, there are different notions of distribution function and it is important to understand the context in which they are used (properties of functions, or properties of measures). Distribution functions (in the sense of measure theory) are a generalization of distribution functions (in the sense of ...
In statistics, especially in Bayesian statistics, the kernel of a probability density function (pdf) or probability mass function (pmf) is the form of the pdf or pmf in which any factors that are not functions of any of the variables in the domain are omitted. [1] Note that such factors may well be functions of the parameters of the
The probability density function and cumulative distribution function can be found by using the F-distribution at the value of ′ =. However, the mean and variance do not follow the same transformation. The probability density function is [2] [3]
In probability theory and statistics, the generalized chi-squared distribution (or generalized chi-square distribution) is the distribution of a quadratic form of a multinormal variable (normal vector), or a linear combination of different normal variables and squares of normal variables.
The theorem is especially important in the theory of financial mathematics as it explains how to convert from the physical measure, which describes the probability that an underlying instrument (such as a share price or interest rate) will take a particular value or values, to the risk-neutral measure which is a very useful tool for evaluating ...