Search results
Results from the WOW.Com Content Network
An excircle or escribed circle [2] of the triangle is a circle lying outside the triangle, tangent to one of its sides, and tangent to the extensions of the other two. Every triangle has three distinct excircles, each tangent to one of the triangle's sides.
Circle with square and octagon inscribed, showing area gap. Suppose that the area C enclosed by the circle is greater than the area T = cr/2 of the triangle. Let E denote the excess amount. Inscribe a square in the circle, so that its four corners lie on the circle. Between the square and the circle are four segments.
Squaring the circle is a problem in geometry first proposed in Greek mathematics.It is the challenge of constructing a square with the area of a given circle by using only a finite number of steps with a compass and straightedge.
Given three points A, B and C on a circle with center O, the angle ∠ AOC is twice as large as the angle ∠ ABC. A related result to Thales's theorem is the following: If AC is a diameter of a circle, then: If B is inside the circle, then ∠ ABC > 90° If B is on the circle, then ∠ ABC = 90° If B is outside the circle, then ∠ ABC < 90°.
The area of the surface of a sphere is equal to four times the area of the circle formed by a great circle of this sphere. The area of a segment of a parabola determined by a straight line cutting it is 4/3 the area of a triangle inscribed in this segment. For the proofs of these results, Archimedes used the method of exhaustion attributed to ...
may lie inside or outside the triangle formed by the other three centers; when it is inside, this triangle's area equals the sum of the other three triangle areas, as above. When it is outside, the quadrilateral formed by the four centers can be subdivided by a diagonal into two triangles, in two different ways, giving an equality between the ...
[25] [26] (Thus, for example, if a square is deformed into a rhombus it remains tangential, though to a smaller incircle). If one side is held in a fixed position, then as the quadrilateral is flexed, the incenter traces out a circle of radius / where a,b,c,d are the sides in sequence and s is the semiperimeter.
Construction of the Malfatti circles: [3] For a given triangle determine three circles, which touch each other and two sides of the triangle each. Spherical version of Malfatti's problem: [4] The triangle is a spherical one. Essential tools for investigations on circles are the radical axis of two circles and the radical center of three circles.