Search results
Results from the WOW.Com Content Network
The size of nanomaterials is similar to that of most biological molecules and structures; therefore, nanomaterials can be useful for both in vivo and in vitro biomedical research and applications. Thus far, the integration of nanomaterials with biology has led to the development of diagnostic devices, contrast agents, analytical tools, physical ...
Nanomedicine is the medical application of nanotechnology. [5] The approaches to nanomedicine range from the medical use of nanomaterials, to nanoelectronic biosensors, and even possible future applications of molecular nanotechnology. Nanomedicine seeks to deliver a valuable set of research tools and clinically helpful devices in the near future.
Application of nanomotor implants have been proposed to achieve thorough disinfection of the dentine. [ 21 ] [ 22 ] In vivo imaging is also a key part in nanomedicine, as nanoparticles can be used as contrast agents for common imaging techniques such as computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography ...
Researchers from Rice University and State University of New York – Stony Brook have shown that the addition of low weight % of carbon nanotubes can lead to significant improvements in the mechanical properties of biodegradable polymeric nanocomposites for applications in tissue engineering including bone, [6] [7] [8] cartilage, [9] muscle [10] and nerve tissue.
A scanning tunneling microscopy image of single-walled carbon nanotube.. Carbon nanotubes (CNTs) are very prevalent in today's world of medical research and are being highly researched in the fields of efficient drug delivery and biosensing methods for disease treatment and health monitoring.
Nanomaterials exhibit different chemical and physical properties or biological effects compared to larger-scale counterparts that can be beneficial for drug delivery systems. Some important advantages of nanoparticles are their high surface-area-to-volume ratio, chemical and geometric tunability, and their ability to interact with biomolecules ...
Nanochemistry is an emerging sub-discipline of the chemical and material sciences that deals with the development of new methods for creating nanoscale materials. [1] The term "nanochemistry" was first used by Ozin in 1992 as 'the uses of chemical synthesis to reproducibly afford nanomaterials from the atom "up", contrary to the nanoengineering and nanophysics approach that operates from the ...
Webster and his team have published over 1350 peer-reviewed publications. His H-index places him in the top 1% of cited articles by researchers in materials science. An example of these articles appear below: Thomas J Webster, Celaletdin Ergun, Robert H Doremus, Richard W Siegel, Rena Bizios; Enhanced functions of osteoblasts on nanophase ceramics.