Search results
Results from the WOW.Com Content Network
Quantum chemistry computer programs are used in computational chemistry to implement the methods of quantum chemistry.Most include the Hartree–Fock (HF) and some post-Hartree–Fock methods.
It refers to computing tools that help calculating the complex particle interactions as studied in high-energy physics, astroparticle physics and cosmology. The goal of the automation is to handle the full sequence of calculations in an automatic (programmed) way: from the Lagrangian expression describing the physics model up to the cross ...
The component of the spin along a specified axis is given by the spin magnetic quantum number, conventionally written m s. [ 1 ] [ 2 ] The value of m s is the component of spin angular momentum, in units of the reduced Planck constant ħ , parallel to a given direction (conventionally labelled the z –axis).
Spin network diagram, after Penrose In physics , a spin network is a type of diagram which can be used to represent states and interactions between particles and fields in quantum mechanics . From a mathematical perspective, the diagrams are a concise way to represent multilinear functions and functions between representations of matrix groups .
The conventional definition of the spin quantum number is s = n / 2 , where n can be any non-negative integer. Hence the allowed values of s are 0, 1 / 2 , 1, 3 / 2 , 2, etc. The value of s for an elementary particle depends only on the type of particle and cannot be altered in any known way (in contrast to the spin ...
The superscript three (read as triplet) indicates that the multiplicity 2S+1 = 3, so that the total spin S = 1. This spin is due to two unpaired electrons, as a result of Hund's rule which favors the single filling of degenerate orbitals. The triplet consists of three states with spin components +1, 0 and –1 along the direction of the total ...
Spin qubits mostly have been implemented by locally depleting two-dimensional electron gases in semiconductors such a gallium arsenide, [5] [6] and germanium. [7] Spin qubits have also been implemented in other material systems such as graphene. [8] A more recent development is using silicon spin qubits, an approach that is e.g. pursued by Intel.
A spin model is a mathematical model used in physics primarily to explain magnetism. Spin models may either be classical or quantum mechanical in nature. Spin models have been studied in quantum field theory as examples of integrable models. Spin models are also used in quantum information theory and computability theory in theoretical computer ...