Search results
Results from the WOW.Com Content Network
Hydroiodic acid (or hydriodic acid) is a colorless liquid. It is an aqueous solution of hydrogen iodide with the chemical formula H I. It is a strong acid, in which hydrogen iodide is ionized completely in an aqueous solution. Concentrated aqueous solutions of hydrogen iodide are usually 48% to 57% HI by mass. [2] An oxidized solution of ...
For example, there is a weak bond between hydrogen and iodine in hydroiodic acid, making it a very strong acid. [ citation needed ] In the simplest case, binary acid names are formed by combining the prefix hydro- , the name of the non-hydrogen nonmetallic element, the suffix -ic , and adding acid as a second word. [ 1 ]
Hydrogen iodide (HI) is a diatomic molecule and hydrogen halide. Aqueous solutions of HI are known as hydroiodic acid or hydriodic acid, a strong acid.Hydrogen iodide and hydroiodic acid are, however, different in that the former is a gas under standard conditions, whereas the other is an aqueous solution of the gas.
In such cases, the H centre has nucleophilic character, which contrasts with the protic character of acids. The hydride anion is very rarely observed. Sodium hydride as an example of hydride salt. Almost all of the elements form binary compounds with hydrogen, the exceptions being He, [2] Ne, [3] Ar, [4] Kr, [5] Pm, Os, Ir, Rn, Fr, and Ra.
The systematic IUPAC name is not always the preferred IUPAC name, for example, lactic acid is a common, and also the preferred, name for what systematic rules call 2-hydroxypropanoic acid. This list is ordered by the number of carbon atoms in a carboxylic acid.
If a chemical is a strong acid, its conjugate base will be weak. [3] An example of this case would be the splitting of hydrochloric acid HCl in water. Since HCl is a strong acid (it splits up to a large extent), its conjugate base (Cl −) will be weak. Therefore, in this system, most H + will be hydronium ions H 3 O +
Binary hydrogen compounds in group 1 are the ionic hydrides (also called saline hydrides) wherein hydrogen is bound electrostatically. Because hydrogen is located somewhat centrally in an electronegative sense, it is necessary for the counterion to be exceptionally electropositive for the hydride to possibly be accurately described as truly behaving ionic.
In chemistry, an acid–base reaction is a chemical reaction that occurs between an acid and a base.It can be used to determine pH via titration.Several theoretical frameworks provide alternative conceptions of the reaction mechanisms and their application in solving related problems; these are called the acid–base theories, for example, Brønsted–Lowry acid–base theory.