Search results
Results from the WOW.Com Content Network
The defining equation for thermal conductivity is =, where is the heat flux, is the thermal conductivity, and is the temperature gradient. This is known as Fourier's law for heat conduction. Although commonly expressed as a scalar , the most general form of thermal conductivity is a second-rank tensor .
Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer P = / W ML 2 T −3: Thermal intensity I = / W⋅m −2
In general, works using the term "thermal resistance" are more engineering-oriented, whereas works using the term thermal conductivity are more [pure-]physics-oriented. The following books are representative, but may be easily substituted. Terry M. Tritt, ed. (2004). Thermal Conductivity: Theory, Properties, and Applications. Springer Science ...
Thermal conductivity, frequently represented by k, is a property that relates the rate of heat loss per unit area of a material to its rate of change of temperature. Essentially, it is a value that accounts for any property of the material that could change the way it conducts heat. [ 1 ]
Plot of the Wiedemann–Franz law for copper. Left axis: specific electric resistance ρ in 10 −10 Ω m, red line and specific thermal conductivity λ in W/(K m), green line. Right axis: ρ times λ in 100 U 2 /K, blue line and Lorenz number ρ λ / K in U 2 /K 2, pink line. Lorenz number is more or less constant.
The plate distance is one centimeter, the special conductivity values were calculated from the Lasance approximation formula in The Thermal conductivity of Air at Reduced Pressures and Length Scales [28] and the primary values were taken from Weast at the normal pressure tables in the CRC handbook on page E2.
In physics, thermal contact conductance is the study of heat conduction between solid or liquid bodies in thermal contact. The thermal contact conductance coefficient , h c {\displaystyle h_{c}} , is a property indicating the thermal conductivity , or ability to conduct heat , between two bodies in contact.
= the thermal conductivity of the material (W/(m·K)) This represents the heat transfer by conduction in the pipe. The thermal conductivity is a characteristic of the particular material. Values of thermal conductivities for various materials are listed in the list of thermal conductivities.