enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Regularization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Regularization_(mathematics)

    A comparison between the L1 ball and the L2 ball in two dimensions gives an intuition on how L1 regularization achieves sparsity. Enforcing a sparsity constraint on can lead to simpler and more interpretable models. This is useful in many real-life applications such as computational biology. An example is developing a simple predictive test for ...

  3. Lasso (statistics) - Wikipedia

    en.wikipedia.org/wiki/Lasso_(statistics)

    In statistics and machine learning, lasso (least absolute shrinkage and selection operator; also Lasso, LASSO or L1 regularization) [1] is a regression analysis method that performs both variable selection and regularization in order to enhance the prediction accuracy and interpretability of the resulting statistical model.

  4. Regularized least squares - Wikipedia

    en.wikipedia.org/wiki/Regularized_least_squares

    This regularization function, while attractive for the sparsity that it guarantees, is very difficult to solve because doing so requires optimization of a function that is not even weakly convex. Lasso regression is the minimal possible relaxation of ℓ 0 {\displaystyle \ell _{0}} penalization that yields a weakly convex optimization problem.

  5. Elastic net regularization - Wikipedia

    en.wikipedia.org/wiki/Elastic_net_regularization

    It was proven in 2014 that the elastic net can be reduced to the linear support vector machine. [7] A similar reduction was previously proven for the LASSO in 2014. [8] The authors showed that for every instance of the elastic net, an artificial binary classification problem can be constructed such that the hyper-plane solution of a linear support vector machine (SVM) is identical to the ...

  6. Ridge regression - Wikipedia

    en.wikipedia.org/wiki/Ridge_regression

    In many cases, this matrix is chosen as a scalar multiple of the identity matrix (=), giving preference to solutions with smaller norms; this is known as L 2 regularization. [20] In other cases, high-pass operators (e.g., a difference operator or a weighted Fourier operator ) may be used to enforce smoothness if the underlying vector is ...

  7. Lp space - Wikipedia

    en.wikipedia.org/wiki/Lp_space

    Techniques which use an L1 penalty, like LASSO, encourage sparse solutions (where the many parameters are zero). [14] Elastic net regularization uses a penalty term that is a combination of the L 1 {\displaystyle L^{1}} norm and the squared L 2 {\displaystyle L^{2}} norm of the parameter vector.

  8. Huber loss - Wikipedia

    en.wikipedia.org/wiki/Huber_loss

    It combines the best properties of L2 squared loss and L1 absolute loss by being strongly convex when close to the target/minimum and less steep for extreme values. The scale at which the Pseudo-Huber loss function transitions from L2 loss for values close to the minimum to L1 loss for extreme values and the steepness at extreme values can be ...

  9. L1-norm principal component analysis - Wikipedia

    en.wikipedia.org/wiki/L1-norm_principal...

    In ()-(), L1-norm ‖ ‖ returns the sum of the absolute entries of its argument and L2-norm ‖ ‖ returns the sum of the squared entries of its argument.If one substitutes ‖ ‖ in by the Frobenius/L2-norm ‖ ‖, then the problem becomes standard PCA and it is solved by the matrix that contains the dominant singular vectors of (i.e., the singular vectors that correspond to the highest ...