Search results
Results from the WOW.Com Content Network
It explains the fact that, in the first few minutes after the Big Bang, as the "soup" of free protons and neutrons which had initially been created in about a 6:1 ratio cooled to the point where nuclear binding was possible, almost all atomic nuclei to form were helium-4 nuclei. The binding of the nucleons in helium-4 is so tight that its ...
It has a charge of +2 e and a mass of 4 Da. For example, uranium-238 decays to form thorium-234. While alpha particles have a charge +2 e, this is not usually shown because a nuclear equation describes a nuclear reaction without considering the electrons – a convention that does not imply that the nuclei necessarily occur in neutral atoms.
Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is considered radioactive. Three of the most common types of decay are alpha, beta, and gamma decay.
However, forming helium-4 requires the intermediate step of forming deuterium. Through much of the few minutes after the Big Bang during which nucleosynthesis could have occurred, the temperature was high enough that the mean energy per particle was greater than the binding energy of weakly bound deuterium; therefore, any deuterium that was ...
the total rest mass on the two helium-nuclei = 2 × 4.0026 = 8.0052 u; missing rest mass = 8.029 – 8.0052 = 0.0238 atomic mass units. In a nuclear reaction, the total (relativistic) energy is conserved. The "missing" rest mass must therefore reappear as kinetic energy released in the reaction; its source is the nuclear binding energy.
The binding energy of helium is the energy source of the Sun and of most stars. [12] The sun is composed of 74 percent hydrogen (measured by mass), an element having a nucleus consisting of a single proton. Energy is released in the Sun when 4 protons combine into a helium nucleus, a process in which two of them are also converted to neutrons. [11]
At the lighter end of the scale, peaks are noted for helium-4, and the multiples such as beryllium-8, carbon-12, oxygen-16, neon-20 and magnesium-24. Binding energy due to the nuclear force approaches a constant value for large A, while the Coulomb acts over a larger distance so that electrical potential energy per proton grows as Z increases.
As a side effect of the process, some carbon nuclei fuse with additional helium to produce a stable isotope of oxygen and energy: 12 6 C + 4 2 He → 16 8 O + γ (+7.162 MeV) Nuclear fusion reactions of helium with hydrogen produces lithium-5, which also is highly unstable, and decays back into smaller nuclei with a half-life of 3.7 × 10 −22 s.