enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Circle Hough Transform - Wikipedia

    en.wikipedia.org/wiki/Circle_Hough_Transform

    The circle Hough Transform (CHT) is a basic feature extraction technique used in digital image processing for detecting circles in imperfect images. The circle candidates are produced by “voting” in the Hough parameter space and then selecting local maxima in an accumulator matrix. It is a specialization of the Hough transform.

  3. Hough transform - Wikipedia

    en.wikipedia.org/wiki/Hough_transform

    scikit-image Hough-transform for line, circle and ellipse, implemented in Python. Hough transform based on wavelet filtering, to detect a circle of a particular radius. (Matlab code.) Hough transform for lines using MATLAB Archived 2014-04-13 at the Wayback Machine; Hough transform for circles in MATLAB; KHT – C++ source code.

  4. Generalised Hough transform - Wikipedia

    en.wikipedia.org/wiki/Generalised_Hough_transform

    The Hough transform was initially developed to detect analytically defined shapes (e.g., line, circle, ellipse etc.). In these cases, we have knowledge of the shape and aim to find out its location and orientation in the image. This modification enables the Hough transform to be used to detect an arbitrary object described with its model.

  5. Computer vision - Wikipedia

    en.wikipedia.org/wiki/Computer_vision

    In image processing, the input is an image and the output is an image as well, whereas in computer vision, an image or a video is taken as an input and the output could be an enhanced image, an understanding of the content of an image or even behavior of a computer system based on such understanding.

  6. Feature (computer vision) - Wikipedia

    en.wikipedia.org/wiki/Feature_(computer_vision)

    Feature detection includes methods for computing abstractions of image information and making local decisions at every image point whether there is an image feature of a given type at that point or not. The resulting features will be subsets of the image domain, often in the form of isolated points, continuous curves or connected regions.

  7. Object detection - Wikipedia

    en.wikipedia.org/wiki/Object_detection

    Objects detected with OpenCV's Deep Neural Network module (dnn) by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1]

  8. Collision detection - Wikipedia

    en.wikipedia.org/wiki/Collision_detection

    In two-dimensional games, in some cases, the hardware was able to efficiently detect and report overlapping pixels between sprites on the screen. [13] In other cases, simply tiling the screen and binding each sprite into the tiles it overlaps provides sufficient pruning, and for pairwise checks, bounding rectangles or circles called hitboxes ...

  9. Bresenham's line algorithm - Wikipedia

    en.wikipedia.org/wiki/Bresenham's_line_algorithm

    An extension to the original algorithm called the midpoint circle algorithm may be used for drawing circles. While algorithms such as Wu's algorithm are also frequently used in modern computer graphics because they can support antialiasing, Bresenham's line algorithm is still important because of its speed and simplicity.