Search results
Results from the WOW.Com Content Network
The union of two intervals is an interval if and only if they have a non-empty intersection or an open end-point of one interval is a closed end-point of the other, for example (,) [,] = (,]. If R {\displaystyle \mathbb {R} } is viewed as a metric space , its open balls are the open bounded intervals ( c + r , c − r ) , and its closed balls ...
For example, the union of three sets A, B, and C contains all elements of A, all elements of B, and all elements of C, and nothing else. Thus, x is an element of A ∪ B ∪ C if and only if x is in at least one of A, B, and C. A finite union is the union of a finite number of sets; the phrase does not imply that the union set is a finite set ...
The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".
The main objective of interval arithmetic is to provide a simple way of calculating upper and lower bounds of a function's range in one or more variables. These endpoints are not necessarily the true supremum or infimum of a range since the precise calculation of those values can be difficult or impossible; the bounds only need to contain the function's range as a subset.
The open interval (a, b) has the same measure, since the difference between the two sets consists only of the end points a and b, which each have measure zero. Any Cartesian product of intervals [a, b] and [c, d] is Lebesgue-measurable, and its Lebesgue measure is (b − a)(d − c), the area of the corresponding rectangle.
Example: the blue circle represents the set of points (x, y) satisfying x 2 + y 2 = r 2.The red disk represents the set of points (x, y) satisfying x 2 + y 2 < r 2.The red set is an open set, the blue set is its boundary set, and the union of the red and blue sets is a closed set.
In mathematics, the symmetric difference of two sets, also known as the disjunctive union and set sum, is the set of elements which are in either of the sets, but not in their intersection. For example, the symmetric difference of the sets { 1 , 2 , 3 } {\displaystyle \{1,2,3\}} and { 3 , 4 } {\displaystyle \{3,4\}} is { 1 , 2 , 4 ...
A σ-algebra of subsets is a set algebra of subsets; elements of the latter only need to be closed under the union or intersection of finitely many subsets, which is a weaker condition. [ 2 ] The main use of σ-algebras is in the definition of measures ; specifically, the collection of those subsets for which a given measure is defined is ...