Search results
Results from the WOW.Com Content Network
In that case, the Gauss map then goes from X to the set of tangent k-planes in the tangent bundle TM. The target space for the Gauss map N is a Grassmann bundle built on the tangent bundle TM . In the case where M = R n {\displaystyle M=\mathbf {R} ^{n}} , the tangent bundle is trivialized (so the Grassmann bundle becomes a map to the ...
The tangent plane at a regular point is the affine plane in R 3 spanned by these vectors and passing through the point r(u, v) on the surface determined by the parameters. Any tangent vector can be uniquely decomposed into a linear combination of r u {\displaystyle \mathbf {r} _{u}} and r v . {\displaystyle \mathbf {r} _{v}.}
The tangent plane to a surface at a given point p is defined in an analogous way to the tangent line in the case of curves. It is the best approximation of the surface by a plane at p , and can be obtained as the limiting position of the planes passing through 3 distinct points on the surface close to p as these points converge to p .
In particular, the tangent plane to a point of S can be rolled on S: this should be easy to imagine when S is a surface like the 2-sphere, which is the smooth boundary of a convex region. As the tangent plane is rolled on S, the point of contact traces out a curve on S. Conversely, given a curve on S, the tangent plane can be rolled along that ...
Finally we calculate E 3. Every point in the plane has at least one tangent line to γ passing through it, and so region filled by the tangent lines is the whole plane. The boundary E 3 is therefore the empty set. Indeed, consider a point in the plane, say (x 0,y 0). This point lies on a tangent line if and only if there exists a t such that
In mathematics, a tangent vector is a vector that is tangent to a curve or surface at a given point. Tangent vectors are described in the differential geometry of curves in the context of curves in R n. More generally, tangent vectors are elements of a tangent space of a differentiable manifold. Tangent vectors can also be described in terms of ...
The tangent plane is an affine concept, because its definition is independent of the choice of a metric. In other words, any affine transformation maps the tangent plane to the surface at a point to the tangent plane to the image of the surface at the image of the point.
In mathematics, the tangent space of a manifold is a generalization of tangent lines to curves in two-dimensional space and tangent planes to surfaces in three-dimensional space in higher dimensions. In the context of physics the tangent space to a manifold at a point can be viewed as the space of possible velocities for a particle moving on ...