Search results
Results from the WOW.Com Content Network
Conical spiral with an archimedean spiral as floor projection Floor projection: Fermat's spiral Floor projection: logarithmic spiral Floor projection: hyperbolic spiral. In mathematics, a conical spiral, also known as a conical helix, [1] is a space curve on a right circular cone, whose floor projection is a plane spiral.
The slope of a circular helix is commonly defined as the ratio of the circumference of the circular cylinder that it spirals around, and its pitch (the height of one complete helix turn). A conic helix, also known as a conic spiral, may be defined as a spiral on a conic surface, with the distance to the apex an exponential function of the angle ...
A ruled surface can be described as the set of points swept by a moving straight line. For example, a cone is formed by keeping one point of a line fixed whilst moving another point along a circle. A surface is doubly ruled if through every one of its points there are two distinct lines that lie on the surface.
Two well-known spiral space curves are conical spirals and spherical spirals, defined below. Another instance of space spirals is the toroidal spiral. [8] A spiral wound around a helix, [9] also known as double-twisted helix, [10] represents objects such as coiled coil filaments.
In cylindrical coordinates, the conchospiral is described by the parametric equations: = = =. The projection of a conchospiral on the (,) plane is a logarithmic spiral.The parameter controls the opening angle of the projected spiral, while the parameter controls the slope of the cone on which the curve lies.
Parametric representation is a very general way to specify a surface, as well as implicit representation. Surfaces that occur in two of the main theorems of vector calculus , Stokes' theorem and the divergence theorem , are frequently given in a parametric form.
The angle of the sloped arm remains constant throughout (traces a cone), and setting a different angle varies the pitch of the spiral. This device provides a high degree of precision, depending on the precision with which the device is machined (machining a precise helical screw thread is a related challenge).
Its name derives from its similarity to the helix: for every point on the helicoid, there is a helix contained in the helicoid which passes through that point. The helicoid is also a ruled surface (and a right conoid), meaning that it is a trace of a line. Alternatively, for any point on the surface, there is a line on the surface passing ...