Search results
Results from the WOW.Com Content Network
Formally, a rational map: between two varieties is an equivalence class of pairs (,) in which is a morphism of varieties from a non-empty open set to , and two such pairs (,) and (′ ′, ′) are considered equivalent if and ′ ′ coincide on the intersection ′ (this is, in particular, vacuously true if the intersection is empty, but since is assumed irreducible, this is impossible).
In mathematics, birational geometry is a field of algebraic geometry in which the goal is to determine when two algebraic varieties are isomorphic outside lower-dimensional subsets. This amounts to studying mappings that are given by rational functions rather than polynomials; the map may fail to be defined where the rational functions have poles.
If X is a smooth complete curve (for example, P 1) and if f is a rational map from X to a projective space P m, then f is a regular map X → P m. [5] In particular, when X is a smooth complete curve, any rational function on X may be viewed as a morphism X → P 1 and, conversely, such a morphism as a rational function on X.
For example, the conic x 2 + y 2 + z 2 = 0 in P 2 over the real numbers R is uniruled but not ruled. (The associated curve over the complex numbers C is isomorphic to P 1 and hence is ruled.) In the positive direction, every uniruled variety of dimension at most 2 over an algebraically closed field of characteristic zero is ruled.
In mathematics, a rational variety is an algebraic variety, over a given field K, which is birationally equivalent to a projective space of some dimension over K. This means that its function field is isomorphic to
There has been extensive research on the Fatou set and Julia set of iterated rational functions, known as rational maps. For example, it is known that the Fatou set of a rational map has either 0, 1, 2 or infinitely many components. [3] Each component of the Fatou set of a rational map can be classified into one of four different classes. [4]
The domain of a rational function f is not V but the complement of the subvariety (a hypersurface) where the denominator of f vanishes. As with regular maps, one may define a rational map from a variety V to a variety V'. As with the regular maps, the rational maps from V to V' may be identified to the field homomorphisms from k(V') to k(V).
The most basic example is the inclusion of integers into rational numbers, which is a homomorphism of rings and of multiplicative semigroups. For both structures it is a monomorphism and a non-surjective epimorphism, but not an isomorphism. [5] [7] A wide generalization of this example is the localization of a ring by a multiplicative set ...