Search results
Results from the WOW.Com Content Network
A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.
Thus if expressed as a fraction with a numerator of 1, probability and odds differ by exactly 1 in the denominator: a probability of 1 in 100 (1/100 = 1%) is the same as odds of 1 to 99 (1/99 = 0.0101... = 0. 01), while odds of 1 to 100 (1/100 = 0.01) is the same as a probability of 1 in 101 (1/101 = 0.00990099... = 0. 0099). This is a minor ...
In the mathematical discipline of numerical linear algebra, a matrix splitting is an expression which represents a given matrix as a sum or difference of matrices. Many iterative methods (for example, for systems of differential equations) depend upon the direct solution of matrix equations involving matrices more general than tridiagonal matrices.
When asked about 0.999..., novices often believe there should be a "final 9", believing 1 − 0.999... to be a positive number which they write as "0.000...1". Whether or not that makes sense, the intuitive goal is clear: adding a 1 to the final 9 in 0.999... would carry all the 9s into 0s and leave a 1 in the ones place.
In general, if an increase of x percent is followed by a decrease of x percent, and the initial amount was p, the final amount is p (1 + 0.01 x)(1 − 0.01 x) = p (1 − (0.01 x) 2); hence the net change is an overall decrease by x percent of x percent (the square of the original percent change when expressed as a decimal number).
For example, 1.6 would be rounded to 1 with probability 0.4 and to 2 with probability 0.6. Stochastic rounding can be accurate in a way that a rounding function can never be. For example, suppose one started with 0 and added 0.3 to that one hundred times while rounding the running total between every addition.
1/52! chance of a specific shuffle Mathematics: The chances of shuffling a standard 52-card deck in any specific order is around 1.24 × 10 −68 (or exactly 1 ⁄ 52!) [4] Computing: The number 1.4 × 10 −45 is approximately equal to the smallest positive non-zero value that can be represented by a single-precision IEEE floating-point value.
Alligation is an old and practical method of solving arithmetic problems related to mixtures of ingredients. There are two types of alligation: alligation medial, used to find the quantity of a mixture given the quantities of its ingredients, and alligation alternate, used to find the amount of each ingredient needed to make a mixture of a given quantity.