Search results
Results from the WOW.Com Content Network
Conversely, a strict partial order < on may be converted to a non-strict partial order by adjoining all relationships of that form; that is, := < is a non-strict partial order. Thus, if ≤ {\displaystyle \leq } is a non-strict partial order, then the corresponding strict partial order < is the irreflexive kernel given by a < b if a ≤ b and a ...
A partially ordered group G is called integrally closed if for all elements a and b of G, if a n ≤ b for all natural n then a ≤ 1. [1]This property is somewhat stronger than the fact that a partially ordered group is Archimedean, though for a lattice-ordered group to be integrally closed and to be Archimedean is equivalent. [2]
The symbol was introduced originally in 1770 by Nicolas de Condorcet, who used it for a partial differential, and adopted for the partial derivative by Adrien-Marie Legendre in 1786. [3] It represents a specialized cursive type of the letter d , just as the integral sign originates as a specialized type of a long s (first used in print by ...
The partial order on / induced by , which will also be denoted by the same symbol , is characterized by [] [] if and only if , where the right hand side condition is independent of the choice of representatives [] and [] of the equivalence classes.
In the mathematical area of order theory, every partially ordered set P gives rise to a dual (or opposite) partially ordered set which is often denoted by P op or P d.This dual order P op is defined to be the same set, but with the inverse order, i.e. x ≤ y holds in P op if and only if y ≤ x holds in P.
A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra.It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet).
In mathematics, a set A is a subset of ... that is, with the same meaning as and instead of the symbols ... is a partial order on the set () defined by ...
Partially order P by: A ≤ B if there exists a strictly increasing f : A → B. Then the subset of non-atomic partial orders forms a filter. Likewise, if I is the set of injective modules over some given commutative ring, of limited cardinality, modulo isomorphism, then a partial order on I is: A ≤ B if there exists an injective linear map f ...