Search results
Results from the WOW.Com Content Network
Another key function of the astral microtubules is to aid in cytokinesis. Astral microtubules interact with motor proteins at the cell membrane to pull the spindle and the entire cell apart once the chromosomes have been replicated. Interpolar/Polar microtubules are a class of microtubules which also radiate out from the centrosome during ...
The interaction between microtubules and the plasma membrane provide support, shape, and stability to the cell, as well as act as tracks for transporting materials within the cell. Overall, microtubular membranes are vital components of cellular organization and function.
Microtubules are assembled from dimers of α- and β-tubulin. These subunits are slightly acidic, with an isoelectric point between 5.2 and 5.8. [14] Each has a molecular weight of approximately 50 kDa. [15] To form microtubules, the dimers of α- and β-tubulin bind to GTP and assemble onto the (+) ends of microtubules while in the GTP-bound ...
Additionally, the microtubules control the beating (movement) of the cilia and flagella. [31] Also, the dynein arms attached to the microtubules function as the molecular motors. The motion of the cilia and flagella is created by the microtubules sliding past one another, which requires ATP. [31] They play key roles in:
Microtubules function as tracks in the intracellular transport of membrane-bound vesicles and organelles. This process is propelled by motor proteins such as dynein. Motor proteins connect the transport vesicles to microtubules and actin filaments to facilitate intracellular movement. [1]
Vimentin is a type III intermediate filament (IF) protein that is expressed in mesenchymal cells. IF proteins are found in all animal cells [6] as well as bacteria. [7] Intermediate filaments, along with tubulin-based microtubules and actin-based microfilaments, comprises the cytoskeleton.
Tau proteins stabilize microtubules, and thus shift the reaction kinetics in favor of addition of new subunits, accelerating microtubule growth. Tau has the additional function of facilitating bundling of microtubules within the nerve cell. The function of tau has been linked to the neurological condition Alzheimer's disease.
Larger TNTs (>0.7 μm) contain an actin structure with microtubules and/or intermediate filaments, and can carry components such as vesicles and organelles between cells, including whole mitochondria. [5] [6] [7] The diameter of TNTs ranges from 0.05 μm to 1.5 μm and they can reach lengths of several cell diameters.