enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Law of large numbers - Wikipedia

    en.wikipedia.org/wiki/Law_of_large_numbers

    This theorem makes rigorous the intuitive notion of probability as the expected long-run relative frequency of an event's occurrence. It is a special case of any of several more general laws of large numbers in probability theory. Chebyshev's inequality. Let X be a random variable with finite expected value μ and finite non-zero variance σ 2.

  3. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4]

  4. Asymptotic theory (statistics) - Wikipedia

    en.wikipedia.org/wiki/Asymptotic_theory_(statistics)

    In statistics, asymptotic theory, or large sample theory, is a framework for assessing properties of estimators and statistical tests. Within this framework, it is often assumed that the sample size n may grow indefinitely; the properties of estimators and tests are then evaluated under the limit of n → ∞ .

  5. De Moivre–Laplace theorem - Wikipedia

    en.wikipedia.org/wiki/De_Moivre–Laplace_theorem

    According to the de Moivre–Laplace theorem, as n grows large, the shape of the discrete distribution converges to the continuous Gaussian curve of the normal distribution. In probability theory , the de Moivre–Laplace theorem , which is a special case of the central limit theorem , states that the normal distribution may be used as an ...

  6. Binomial test - Wikipedia

    en.wikipedia.org/wiki/Binomial_test

    The binomial test is useful to test hypotheses about the probability of success: : = where is a user-defined value between 0 and 1.. If in a sample of size there are successes, while we expect , the formula of the binomial distribution gives the probability of finding this value:

  7. Binomial proportion confidence interval - Wikipedia

    en.wikipedia.org/wiki/Binomial_proportion...

    The normal approximation depends on the de Moivre–Laplace theorem (the original, binomial-only version of the central limit theorem) and becomes unreliable when it violates the theorems' premises, as the sample size becomes small or the success probability grows close to either 0 or 1 . [4]

  8. Chauvenet's criterion - Wikipedia

    en.wikipedia.org/wiki/Chauvenet's_criterion

    The idea behind Chauvenet's criterion finds a probability band that reasonably contains all n samples of a data set, centred on the mean of a normal distribution.By doing this, any data point from the n samples that lies outside this probability band can be considered an outlier, removed from the data set, and a new mean and standard deviation based on the remaining values and new sample size ...

  9. Galton board - Wikipedia

    en.wikipedia.org/wiki/Galton_board

    Galton box A Galton box demonstrated. The Galton board, also known as the Galton box or quincunx or bean machine (or incorrectly Dalton board), is a device invented by Francis Galton [1] to demonstrate the central limit theorem, in particular that with sufficient sample size the binomial distribution approximates a normal distribution.

  1. Related searches success run theorem sample size

    bayes success run theorem sample size