enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Generalized trigonometry - Wikipedia

    en.wikipedia.org/wiki/Generalized_trigonometry

    Ordinary trigonometry studies triangles in the Euclidean plane ⁠ ⁠.There are a number of ways of defining the ordinary Euclidean geometric trigonometric functions on real numbers, for example right-angled triangle definitions, unit circle definitions, series definitions [broken anchor], definitions via differential equations [broken anchor], and definitions using functional equations.

  3. Sierpiński triangle - Wikipedia

    en.wikipedia.org/wiki/Sierpiński_triangle

    A level-5 approximation to a Sierpiński triangle obtained by shading the first 2 5 (32) levels of a Pascal's triangle white if the binomial coefficient is even and black otherwise If one takes Pascal's triangle with 2 n {\displaystyle 2^{n}} rows and colors the even numbers white, and the odd numbers black, the result is an approximation to ...

  4. Bretschneider's formula - Wikipedia

    en.wikipedia.org/wiki/Bretschneider's_formula

    Bretschneider's formula generalizes Brahmagupta's formula for the area of a cyclic quadrilateral, which in turn generalizes Heron's formula for the area of a triangle.. The trigonometric adjustment in Bretschneider's formula for non-cyclicality of the quadrilateral can be rewritten non-trigonometrically in terms of the sides and the diagonals e and f to give [2] [3]

  5. Solution of triangles - Wikipedia

    en.wikipedia.org/wiki/Solution_of_triangles

    Solution of triangles (Latin: solutio triangulorum) is the main trigonometric problem of finding the characteristics of a triangle (angles and lengths of sides), when some of these are known. The triangle can be located on a plane or on a sphere. Applications requiring triangle solutions include geodesy, astronomy, construction, and navigation.

  6. Napoleon's theorem - Wikipedia

    en.wikipedia.org/wiki/Napoleon's_theorem

    Napoleon's theorem: If the triangles centered on L, M, N are equilateral, then so is the green triangle.. In geometry, Napoleon's theorem states that if equilateral triangles are constructed on the sides of any triangle, either all outward or all inward, the lines connecting the centres of those equilateral triangles themselves form an equilateral triangle.

  7. Droz-Farny line theorem - Wikipedia

    en.wikipedia.org/wiki/Droz-Farny_line_theorem

    Second generalization: Let a conic S and a point P on the plane. Construct three lines d a , d b , d c through P such that they meet the conic at A, A'; B, B' ; C, C' respectively. Let D be a point on the polar of point P with respect to (S) or D lies on the conic (S).

  8. The Secrets of Triangles - Wikipedia

    en.wikipedia.org/wiki/The_Secrets_of_Triangles

    The chapter on areas includes both trigonometric formulas and Heron's formula for computing the area of a triangle from its side lengths, and the chapter on inequalities includes the Erdős–Mordell inequality on sums of distances from the sides of a triangle and Weitzenböck's inequality relating the area of a triangle to that of squares on ...

  9. Pappus's area theorem - Wikipedia

    en.wikipedia.org/wiki/Pappus's_area_theorem

    Pappus's area theorem describes the relationship between the areas of three parallelograms attached to three sides of an arbitrary triangle. The theorem, which can also be thought of as a generalization of the Pythagorean theorem, is named after the Greek mathematician Pappus of Alexandria (4th century AD), who discovered it.