Search results
Results from the WOW.Com Content Network
The length of a vector is defined as the square root of the dot product of the vector by itself, and the cosine of the (non oriented) angle between two vectors of length one is defined as their dot product. So the equivalence of the two definitions of the dot product is a part of the equivalence of the classical and the modern formulations of ...
Another method of deriving vector and tensor derivative identities is to replace all occurrences of a vector in an algebraic identity by the del operator, provided that no variable occurs both inside and outside the scope of an operator or both inside the scope of one operator in a term and outside the scope of another operator in the same term ...
The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.
In , the inner product is also known as the dot product. In addition to the standard inner product notation, the dot product notation (using the dot as an operator) can also be used (and is more common). The dot product of two vectors u and v can be represented as:
The components of a vector are often represented arranged in a column. By contrast, a covector has components that transform like the reference axes. It lives in the dual vector space, and represents a linear map from vectors to scalars. The dot product operator involving vectors is a good example of a covector.
Vector algebra relations — regarding operations on individual vectors such as dot product, cross product, etc. Vector calculus identities — regarding operations on vector fields such as divergence, gradient, curl, etc.
In linear algebra, the outer product of two coordinate vectors is the matrix whose entries are all products of an element in the first vector with an element in the second vector. If the two coordinate vectors have dimensions n and m , then their outer product is an n × m matrix.
Also, the dot, cross, and dyadic products can all be expressed in matrix form. Dyadic expressions may closely resemble the matrix equivalents. The dot product of a dyadic with a vector gives another vector, and taking the dot product of this result gives a scalar derived from the dyadic.