Search results
Results from the WOW.Com Content Network
Using row operations to convert a matrix into reduced row echelon form is sometimes called Gauss–Jordan elimination. In this case, the term Gaussian elimination refers to the process until it has reached its upper triangular, or (unreduced) row echelon form. For computational reasons, when solving systems of linear equations, it is sometimes ...
To compute a matrix inverse using this method, an augmented matrix is first created with the left side being the matrix to invert and the right side being the identity matrix. Then, Gaussian elimination is used to convert the left side into the identity matrix, which causes the right side to become the inverse of the input matrix.
The reduced row echelon form of a matrix is unique and does not depend on the sequence of elementary row operations used to obtain it. The variant of Gaussian elimination that transforms a matrix to reduced row echelon form is sometimes called Gauss–Jordan elimination. A matrix is in column echelon form if its transpose is in row echelon form.
To quote: "It appears that Gauss and Doolittle applied the method [of elimination] only to symmetric equations. More recent authors, for example, Aitken, Banachiewicz, Dwyer, and Crout … have emphasized the use of the method, or variations of it, in connection with non-symmetric problems …
If a matrix is multiplied from the left (left multiplied) with a Gauss transformation matrix, a linear combination of the preceding rows is added to the given row of the matrix (in the example shown above, a linear combination of rows 1 and 2 will be added to row 3). Multiplication with the inverse matrix subtracts the corresponding linear ...
The Schur complement arises when performing a block Gaussian elimination on the matrix M.In order to eliminate the elements below the block diagonal, one multiplies the matrix M by a block lower triangular matrix on the right as follows: = [] [] [] = [], where I p denotes a p×p identity matrix.
Using a standard 12-ounce serving, Hims analyzed the following nutritional data: Calories. Carbohydrates. Sugar. Additives. The top-ranking drinks on the list have the lowest total number of ...
The simplest method for solving a system of linear equations is to repeatedly eliminate variables. This method can be described as follows: In the first equation, solve for one of the variables in terms of the others. Substitute this expression into the remaining equations. This yields a system of equations with one fewer equation and unknown.