Search results
Results from the WOW.Com Content Network
If a dynamic equilibrium is disturbed by changing the conditions, the position of equilibrium moves to partially reverse the change. For example, adding more S (to the chemical reaction above) from the outside will cause an excess of products, and the system will try to counteract this by increasing the reverse reaction and pushing the ...
The equilibrium constant for a full redox reaction can be obtained from the standard redox potentials of the constituent half-reactions. At equilibrium the potential for the two half-reactions must be equal to each other and, of course, the number of electrons exchanged must be the same in the two half reactions. [32]
the reaction results in the change of the number of moles of gas in the system. In the example reaction above, the number of moles changes from 4 to 2, and an increase of pressure by system compression will result in appreciably more ammonia in the equilibrium mixture. In the general case of a gaseous reaction: α A + β B ⇌ σ S + τ T
For example, consider the Haber process for the synthesis of ammonia (NH 3): N 2 + 3 H 2 ⇌ 2 NH 3. In the above reaction, iron (Fe) and molybdenum (Mo) will function as catalysts if present. They will accelerate any reactions, but they do not affect the state of the equilibrium.
Equilibrium constant, a quantity characterizing a chemical equilibrium in a chemical reaction; Partition equilibrium, a type of chromatography that is typically used in GC; Quasistatic equilibrium, the quasi-balanced state of a thermodynamic system near to equilibrium in some sense or degree; Schlenk equilibrium, a chemical equilibrium named ...
Raoult's law defines the equilibrium vapor pressure of an ideal solution. Dynamic equilibrium can also exist in a single-phase system. A simple example occurs with acid-base equilibrium such as the dissociation of acetic acid, in an aqueous solution. + +
Weak acids and bases undergo reversible reactions. For example, carbonic acid: H 2 CO 3 (l) + H 2 O (l) ⇌ HCO 3 − (aq) + H 3 O + (aq). The concentrations of reactants and products in an equilibrium mixture are determined by the analytical concentrations of the reagents (A and B or C and D) and the equilibrium constant, K.
For example, if the reaction equation had 2 H + ions in the product, then the "change" for that cell would be "2x" The fourth row, labeled E, is the sum of the first two rows and shows the final concentrations of each species at equilibrium. It can be seen from the table that, at equilibrium, [H +] = x.