Search results
Results from the WOW.Com Content Network
Stereographic projection of the unit sphere from the north pole onto the plane z = 0, shown here in cross section. The unit sphere S 2 in three-dimensional space R 3 is the set of points (x, y, z) such that x 2 + y 2 + z 2 = 1.
The maturation of complex analysis led to general techniques for conformal mapping, where points of a flat surface are handled as numbers on the complex plane.While working at the United States Coast and Geodetic Survey, the American philosopher Charles Sanders Peirce published his projection in 1879, [2] having been inspired by H. A. Schwarz's 1869 conformal transformation of a circle onto a ...
Gnomonic projection of a portion of the north hemisphere centered on the geographic North Pole The gnomonic projection with Tissot's indicatrix of deformation. A gnomonic projection, also known as a central projection or rectilinear projection, is a perspective projection of a sphere, with center of projection at the sphere's center, onto any plane not passing through the center, most commonly ...
For example, a small circle of fixed radius (e.g., 15 degrees angular radius). [14] Sometimes spherical triangles are used. [citation needed] In the first half of the 20th century, projecting a human head onto different projections was common to show how distortion varies across one projection as compared to another. [15]
They are written in terms of longitude (λ) and latitude (φ) on the sphere. Define the radius of the sphere R and the center point (and origin) of the projection (λ 0, φ 0). The equations for the orthographic projection onto the (x, y) tangent plane reduce to the following: [1]
Projects the globe onto eight octants (Reuleaux triangles) with no meridians and no parallels. 1909 Cahill's butterfly map: Polyhedral Compromise Bernard Joseph Stanislaus Cahill: Projects the globe onto an octahedron with symmetrical components and contiguous landmasses that may be displayed in various arrangements. 1975 Cahill–Keyes projection
It sends the point (0, 0, −1) to (0, 0), the equator z = 0 to the circle of radius √ 2 centered at (0, 0), and the lower hemisphere z < 0 to the open disk contained in that circle. The projection is a diffeomorphism (a bijection that is infinitely differentiable in both directions) between the sphere (minus (0, 0, 1)) and the open disk of ...
The Gauss map provides a mapping from every point on a curve or a surface to a corresponding point on a unit sphere. In this example, the curvature of a 2D-surface is mapped onto a 1D unit circle. In differential geometry , the Gauss map of a surface is a function that maps each point in the surface to a unit vector that is orthogonal to the ...