Search results
Results from the WOW.Com Content Network
The ideal gas model has been explored in both the Newtonian dynamics (as in "kinetic theory") and in quantum mechanics (as a "gas in a box"). The ideal gas model has also been used to model the behavior of electrons in a metal (in the Drude model and the free electron model), and it is one of the most important models in statistical mechanics.
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
This simple model can be used to describe the classical ideal gas as well as the various quantum ideal gases such as the ideal massive Fermi gas, the ideal massive Bose gas as well as black body radiation which may be treated as a massless Bose gas, in which thermalization is usually assumed to be facilitated by the interaction of the photons ...
Ideal gas law; S. Sackur–Tetrode equation; Scale-free ideal gas This page was last edited on 10 August 2024, at 04:02 (UTC). Text is available under the ...
The kinetic theory of gases is a simple classical model of the thermodynamic behavior of gases. Its introduction allowed many principal concepts of thermodynamics to be established. It treats a gas as composed of numerous particles, too small to be seen with a microscope, in constant, random motion.
A two-dimensional gas is a collection of objects constrained to move in a planar or other two-dimensional space in a gaseous state. The objects can be: classical ideal gas elements such as rigid disks undergoing elastic collisions; elementary particles, or any ensemble of individual objects in physics which obeys laws of motion without binding interactions.
The laws describing the behaviour of gases under fixed pressure, volume, amount of gas, and absolute temperature conditions are called gas laws.The basic gas laws were discovered by the end of the 18th century when scientists found out that relationships between pressure, volume and temperature of a sample of gas could be obtained which would hold to approximation for all gases.
The scale-free ideal gas (SFIG) is a physical model assuming a collection of non-interacting elements with a stochastic proportional growth. It is the scale-invariant version of an ideal gas. Some cases of city-population, electoral results and cites to scientific journals can be approximately considered scale-free ideal gases. [1]