enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    Acceleration has the dimensions of velocity (L/T) divided by time, i.e. L T −2. The SI unit of acceleration is the metre per second squared (m s −2); or "metre per second per second", as the velocity in metres per second changes by the acceleration value, every second.

  3. Coriolis force - Wikipedia

    en.wikipedia.org/wiki/Coriolis_force

    The effect of Coriolis force on its trajectory is shown again as seen by two observers: an observer (referred to as the "camera") that rotates with the carousel, and an inertial observer. The figure shows a bird's-eye view based upon the same ball speed on forward and return paths. Within each circle, plotted dots show the same time points.

  4. Jerk (physics) - Wikipedia

    en.wikipedia.org/wiki/Jerk_(physics)

    For example, consider the effects of acceleration and jerk when riding in a car: Skilled and experienced drivers can accelerate smoothly, but beginners often provide a jerky ride. When changing gears in a car with a foot-operated clutch, the accelerating force is limited by engine power, but an inexperienced driver can cause severe jerk because ...

  5. Mass driver - Wikipedia

    en.wikipedia.org/wiki/Mass_driver

    A 1 km long mass driver made of superconducting coils can accelerate a 20 kg vehicle to 10.5 km/s at a conversion efficiency of 80%, and average acceleration of 5,600 g. [10] Earth-based mass drivers for propelling vehicles to orbit, such as the StarTram concept, would require considerable capital investment. [11]

  6. Motion - Wikipedia

    en.wikipedia.org/wiki/Motion

    It produces very accurate results within these domains and is one of the oldest and largest scientific descriptions in science, engineering, and technology. Classical mechanics is fundamentally based on Newton's laws of motion. These laws describe the relationship between the forces acting on a body and the motion of that body.

  7. Artificial gravity - Wikipedia

    en.wikipedia.org/wiki/Artificial_gravity

    In a number of science fiction plots, acceleration is used to produce artificial gravity for interstellar spacecraft, propelled by as yet theoretical or hypothetical means. This effect of linear acceleration is well understood, and is routinely used for 0 g cryogenic fluid management for post-launch (subsequent) in-space firings of upper stage ...

  8. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation. [2] [3] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2), [4] depending on altitude, latitude, and longitude.

  9. g-force - Wikipedia

    en.wikipedia.org/wiki/G-force

    While acceleration is a vector quantity, g-force accelerations ("g-forces" for short) are often expressed as a scalar, based on the vector magnitude, with positive g-forces pointing downward (indicating upward acceleration), and negative g-forces pointing upward. Thus, a g-force is a vector of acceleration.