enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vector projection - Wikipedia

    en.wikipedia.org/wiki/Vector_projection

    The vector projection (also known as the vector component or vector resolution) of a vector a on (or onto) a nonzero vector b is the orthogonal projection of a onto a straight line parallel to b. The projection of a onto b is often written as proj b ⁡ a {\displaystyle \operatorname {proj} _{\mathbf {b} }\mathbf {a} } or a ∥ b .

  3. Vertical and horizontal bundles - Wikipedia

    en.wikipedia.org/wiki/Vertical_and_horizontal...

    In this way, the connection form can be used to define the horizontal bundle: The horizontal bundle is the kernel of the connection form. The solder form or tautological one-form vanishes on the vertical bundle and is non-zero only on the horizontal bundle. By definition, the solder form takes its values entirely in the horizontal bundle.

  4. Projection - Wikipedia

    en.wikipedia.org/wiki/Projection

    Projection (mathematics), any of several different types of geometrical mappings Projection (linear algebra), a linear transformation P from a vector space to itself such that P 2 = P; Projection (set theory), one of two closely related types of functions or operations in set theory; Projection (measure theory), use of a projection map in ...

  5. Vector (mathematics and physics) - Wikipedia

    en.wikipedia.org/wiki/Vector_(mathematics_and...

    Vector projection, also known as vector resolute or vector component, a linear mapping producing a vector parallel to a second vector; Vector-valued function, a function that has a vector space as a codomain; Vectorization (mathematics), a linear transformation that converts a matrix into a column vector

  6. Projection (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Projection_(linear_algebra)

    A square matrix is called a projection matrix if it is equal to its square, i.e. if =. [2]: p. 38 A square matrix is called an orthogonal projection matrix if = = for a real matrix, and respectively = = for a complex matrix, where denotes the transpose of and denotes the adjoint or Hermitian transpose of .

  7. Spatial gradient - Wikipedia

    en.wikipedia.org/wiki/Spatial_gradient

    Homogeneous regions have spatial gradient vector norm equal to zero. When evaluated over vertical position (altitude or depth), it is called vertical derivative or vertical gradient; the remainder is called horizontal gradient component, the vector projection of the full gradient onto the horizontal plane. Examples: Biology

  8. Orthogonality - Wikipedia

    en.wikipedia.org/wiki/Orthogonality

    The line segments AB and CD are orthogonal to each other. In mathematics, orthogonality is the generalization of the geometric notion of perpendicularity.Whereas perpendicular is typically followed by to when relating two lines to one another (e.g., "line A is perpendicular to line B"), [1] orthogonal is commonly used without to (e.g., "orthogonal lines A and B").

  9. Vector (molecular biology) - Wikipedia

    en.wikipedia.org/wiki/Vector_(molecular_biology)

    The vector itself generally carries a DNA sequence that consists of an insert (in this case the transgene) and a larger sequence that serves as the "backbone" of the vector. The purpose of a vector which transfers genetic information to another cell is typically to isolate, multiply, or express the insert in the target cell.