enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euclidean distance - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance

    Minkowski distance (L p distance), a generalization that unifies Euclidean distance, taxicab distance, and Chebyshev distance. For points on surfaces in three dimensions, the Euclidean distance should be distinguished from the geodesic distance, the length of a shortest curve that belongs to the surface.

  3. Distance from a point to a line - Wikipedia

    en.wikipedia.org/wiki/Distance_from_a_point_to_a...

    The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be derived and expressed in several ways.

  4. Distance from a point to a plane - Wikipedia

    en.wikipedia.org/wiki/Distance_from_a_point_to_a...

    The formula for the closest point to the origin may be expressed more succinctly using notation from linear algebra. The expression a x + b y + c z {\displaystyle ax+by+cz} in the definition of a plane is a dot product ( a , b , c ) ⋅ ( x , y , z ) {\displaystyle (a,b,c)\cdot (x,y,z)} , and the expression a 2 + b 2 + c 2 {\displaystyle a^{2 ...

  5. Chebyshev distance - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_distance

    The two dimensional Manhattan distance has "circles" i.e. level sets in the form of squares, with sides of length √ 2 r, oriented at an angle of π/4 (45°) to the coordinate axes, so the planar Chebyshev distance can be viewed as equivalent by rotation and scaling to (i.e. a linear transformation of) the planar Manhattan distance.

  6. Metric space - Wikipedia

    en.wikipedia.org/wiki/Metric_space

    The distance is measured by a function called a metric or distance function. [1] Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry. The most familiar example of a metric space is 3-dimensional Euclidean space with its usual notion of distance.

  7. Arc length - Wikipedia

    en.wikipedia.org/wiki/Arc_length

    Arc lengths are denoted by s, since the Latin word for length (or size) is spatium. In the following lines, r {\displaystyle r} represents the radius of a circle , d {\displaystyle d} is its diameter , C {\displaystyle C} is its circumference , s {\displaystyle s} is the length of an arc of the circle, and θ {\displaystyle \theta } is the ...

  8. Poincaré half-plane model - Wikipedia

    en.wikipedia.org/wiki/Poincaré_half-plane_model

    The metric of the model on the half-plane, { , >}, is: = + ()where s measures the length along a (possibly curved) line. The straight lines in the hyperbolic plane (geodesics for this metric tensor, i.e., curves which minimize the distance) are represented in this model by circular arcs perpendicular to the x-axis (half-circles whose centers are on the x-axis) and straight vertical rays ...

  9. Distance geometry - Wikipedia

    en.wikipedia.org/wiki/Distance_geometry

    Distance geometry is the branch of mathematics concerned with characterizing and studying sets of points based only on given values of the distances between pairs of points. [ 1 ] [ 2 ] [ 3 ] More abstractly, it is the study of semimetric spaces and the isometric transformations between them.