enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heaviside step function - Wikipedia

    en.wikipedia.org/wiki/Heaviside_step_function

    The Heaviside step function, or the unit step function, usually denoted by H or θ (but sometimes u, 1 or 𝟙), is a step function named after Oliver Heaviside, the value of which is zero for negative arguments and one for positive arguments. Different conventions concerning the value H(0) are in use.

  3. Gibbs phenomenon - Wikipedia

    en.wikipedia.org/wiki/Gibbs_phenomenon

    Thus, the Gibbs phenomenon can be seen as the result of convolving a Heaviside step function (if periodicity is not required) or a square wave (if periodic) with a sinc function: the oscillations in the sinc function cause the ripples in the output. The sine integral, exhibiting the Gibbs phenomenon for a step function on the real line

  4. Rectangular function - Wikipedia

    en.wikipedia.org/wiki/Rectangular_function

    Plot of normalized ⁡ function (i.e. ⁡ ()) with its spectral frequency components.. The unitary Fourier transforms of the rectangular function are [2] ⁡ = ⁡ = ⁡ (), using ordinary frequency f, where is the normalized form [10] of the sinc function and ⁡ = ⁡ (/) / = ⁡ (/), using angular frequency , where is the unnormalized form of the sinc function.

  5. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    The Fourier transform of a normal density ... Its cumulative distribution function is then the Heaviside step function translated by the mean ... (Matlab code). In ...

  6. Step response - Wikipedia

    en.wikipedia.org/wiki/Step_response

    The step response of a system in a given initial state consists of the time evolution of its outputs when its control inputs are Heaviside step functions. In electronic engineering and control theory , step response is the time behaviour of the outputs of a general system when its inputs change from zero to one in a very short time.

  7. Causal filter - Wikipedia

    en.wikipedia.org/wiki/Causal_filter

    which is non-causal. On the other hand, g(t) is Hermitian and, consequently, its Fourier transform G(ω) is real-valued. We now have the following relation = () where Θ(t) is the Heaviside unit step function. This means that the Fourier transforms of h(t) and g(t) are related as follows

  8. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    The trade-off between the compaction of a function and its Fourier transform can be formalized in the form of an uncertainty principle by viewing a function and its Fourier transform as conjugate variables with respect to the symplectic form on the time–frequency domain: from the point of view of the linear canonical transformation, the ...

  9. List of Laplace transforms - Wikipedia

    en.wikipedia.org/wiki/List_of_Laplace_transforms

    The unilateral Laplace transform takes as input a function whose time domain is the non-negative reals, which is why all of the time domain functions in the table below are multiples of the Heaviside step function, u(t). The entries of the table that involve a time delay τ are required to be causal (meaning that τ > 0).