Search results
Results from the WOW.Com Content Network
The grid method (or box method) is an introductory method for multiple-digit multiplication that is often taught to pupils at primary school or elementary school. It has been a standard part of the national primary school mathematics curriculum in England and Wales since the late 1990s.
Classical modular multiplication reduces the double-width product ab using division by N and keeping only the remainder. This division requires quotient digit estimation and correction. The Montgomery form, in contrast, depends on a constant R > N which is coprime to N, and the only division necessary in Montgomery multiplication is division by R.
Karatsuba multiplication of az+b and cz+d (boxed), and 1234 and 567 with z=100. Magenta arrows denote multiplication, amber denotes addition, silver denotes subtraction and cyan denotes left shift. (A), (B) and (C) show recursion with z=10 to obtain intermediate values. The Karatsuba algorithm is a fast multiplication algorithm.
The Schönhage–Strassen algorithm was the asymptotically fastest multiplication method known from 1971 until 2007. It is asymptotically faster than older methods such as Karatsuba and Toom–Cook multiplication , and starts to outperform them in practice for numbers beyond about 10,000 to 100,000 decimal digits. [ 2 ]
Booth's multiplication algorithm is a multiplication algorithm that multiplies two signed binary numbers in two's complement notation. The algorithm was invented by Andrew Donald Booth in 1950 while doing research on crystallography at Birkbeck College in Bloomsbury, London. [1] Booth's algorithm is of interest in the study of computer ...
The complexity of an elementary function is equivalent to that of its inverse, since all elementary functions are analytic and hence invertible by means of Newton's method. In particular, if either exp {\displaystyle \exp } or log {\displaystyle \log } in the complex domain can be computed with some complexity, then that complexity is ...
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
One example where a deque can be used is the work stealing algorithm. [9] This algorithm implements task scheduling for several processors. A separate deque with threads to be executed is maintained for each processor. To execute the next thread, the processor gets the first element from the deque (using the "remove first element" deque operation).