Search results
Results from the WOW.Com Content Network
Response surface methodology uses statistical models, and therefore practitioners need to be aware that even the best statistical model is an approximation to reality. In practice, both the models and the parameter values are unknown, and subject to uncertainty on top of ignorance.
Design of experiments with full factorial design (left), response surface with second-degree polynomial (right) The design of experiments , also known as experiment design or experimental design , is the design of any task that aims to describe and explain the variation of information under conditions that are hypothesized to reflect the variation.
In game theory, the best response is the strategy (or strategies) which produces the most favorable outcome for a player, taking other players' strategies as given. [1] The concept of a best response is central to John Nash's best-known contribution, the Nash equilibrium, the point at which each player in a game has selected the best response (or one of the best responses) to the other players ...
DFSS is largely a design activity requiring tools including: quality function deployment (QFD), axiomatic design, TRIZ, Design for X, design of experiments (DOE), Taguchi methods, tolerance design, robustification and Response Surface Methodology for a single or multiple response optimization. While these tools are sometimes used in the classic ...
A research design typically outlines the theories and models underlying a project; the research question(s) of a project; a strategy for gathering data and information; and a strategy for producing answers from the data. [1] A strong research design yields valid answers to research questions while weak designs yield unreliable, imprecise or ...
The design with 7 factors was found first while looking for a design having the desired property concerning estimation variance, and then similar designs were found for other numbers of factors. Each design can be thought of as a combination of a two-level (full or fractional) factorial design with an incomplete block design. In each block, a ...
In statistics, a central composite design is an experimental design, useful in response surface methodology, for building a second order (quadratic) model for the response variable without needing to use a complete three-level factorial experiment.
There are several methods of finding an optimal design, given an a priori restriction on the number of experimental runs or replications. Some of these methods are discussed by Atkinson, Donev and Tobias and in the paper by Hardin and Sloane .