Search results
Results from the WOW.Com Content Network
Mscgen (short for MSC generator) is a software tool for drawing message sequence charts [1] from a simple to manage text-based source file. Rendered charts can be output in PNG, SVG and PostScript, with hyperlink information in ismap format.
The fourth is a great example of how interactive graphical tools enable a worker involved in sequence analysis to conveniently execute a variety if different computational tools to explore an alignment's phylogenetic implications; or, to predict the structure and functional properties of a specific sequence, e.g., comparative modelling.
The problem with is that the convergence to by iterating () requires, theoretically, an infinite number of operations. The problem with any given p {\displaystyle p} is that, sometimes, due to rounding errors, a period is falsely identified to be an integer multiple of the real period (e.g., a period of 86 is detected, while the real period is ...
Absolute convergence implies Cauchy convergence of the sequence of partial sums (by the triangle inequality), which in turn implies absolute convergence of some grouping (not reordering). The sequence of partial sums obtained by grouping is a subsequence of the partial sums of the original series.
In numerical analysis, Richardson extrapolation is a sequence acceleration method used to improve the rate of convergence of a sequence of estimates of some value = (). In essence, given the value of A ( h ) {\displaystyle A(h)} for several values of h {\displaystyle h} , we can estimate A ∗ {\displaystyle A^{\ast }} by extrapolating the ...
Two classical techniques for series acceleration are Euler's transformation of series [1] and Kummer's transformation of series. [2] A variety of much more rapidly convergent and special-case tools have been developed in the 20th century, including Richardson extrapolation, introduced by Lewis Fry Richardson in the early 20th century but also known and used by Katahiro Takebe in 1722; the ...
In numerical analysis, Aitken's delta-squared process or Aitken extrapolation is a series acceleration method used for accelerating the rate of convergence of a sequence. It is named after Alexander Aitken, who introduced this method in 1926. [1] It is most useful for accelerating the convergence of a sequence that is converging linearly.
A cycle of length 3, for example, occurs if an iterate has a 3-bit repeating sequence in its binary expansion (which is not also a one-bit repeating sequence): 001, 010, 100, 110, 101, or 011. The iterate 001001001... maps into 010010010..., which maps into 100100100..., which in turn maps into the original 001001001...; so this is a 3-cycle of ...