Search results
Results from the WOW.Com Content Network
Euclid gave the definition of parallel lines in Book I, Definition 23 [2] just before the five postulates. [3] Euclidean geometry is the study of geometry that satisfies all of Euclid's axioms, including the parallel postulate. The postulate was long considered to be obvious or inevitable, but proofs were elusive.
Elliptic geometry is an example of a geometry in which Euclid's parallel postulate does not hold. Instead, as in spherical geometry , there are no parallel lines since any two lines must intersect. However, unlike in spherical geometry, two lines are usually assumed to intersect at a single point (rather than two).
The various attempted proofs of the parallel postulate produced a long list of theorems that are equivalent to the parallel postulate. Equivalence here means that in the presence of the other axioms of the geometry each of these theorems can be assumed to be true and the parallel postulate can be proved from this altered set of axioms.
Independence of the parallel postulate ; Infinite monkey theorem (probability) Integral root theorem (algebra, polynomials) Initial value theorem (integral transform) Inscribed angle theorem ; Integral representation theorem for classical Wiener space (measure theory) Intermediate value theorem ; Intercept theorem (Euclidean geometry)
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements.Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions from these.
For examples, elliptic geometry (no parallels) and hyperbolic geometry (many parallels). Both elliptic and hyperbolic geometry are consistent systems, showing that the parallel postulate is independent of the other axioms. [2] Proving independence is often very difficult. Forcing is one commonly used technique. [3]
The fundamental property that singles out all projective geometries is the elliptic incidence property that any two distinct lines L and M in the projective plane intersect at exactly one point P. The special case in analytic geometry of parallel lines is subsumed in the smoother form of a line at infinity on which P lies.
These proofs of unprovability of the parallel postulate lead to several philosophical problems, the main one being that before this discovery, the parallel postulate and all its consequences were considered as true. So, the non-Euclidean geometries challenged the concept of mathematical truth.