Search results
Results from the WOW.Com Content Network
In mathematics, a quartic equation is one which can be expressed as a quartic function equaling zero. The general form of a quartic equation is Graph of a polynomial function of degree 4, with its 4 roots and 3 critical points. + + + + = where a ≠ 0.
For polynomials in two or more variables, the degree of a term is the sum of the exponents of the variables in the term; the degree (sometimes called the total degree) of the polynomial is again the maximum of the degrees of all terms in the polynomial. For example, the polynomial x 2 y 2 + 3x 3 + 4y has degree 4, the same degree as the term x ...
Graph of a polynomial of degree 4, with 3 critical points and four real roots (crossings of the x axis) (and thus no complex roots). If one or the other of the local minima were above the x axis, or if the local maximum were below it, or if there were no local maximum and one minimum below the x axis, there would only be two real roots (and two complex roots).
The coefficient is −5, the indeterminates are x and y, the degree of x is two, while the degree of y is one. The degree of the entire term is the sum of the degrees of each indeterminate in it, so in this example the degree is 2 + 1 = 3. Forming a sum of several terms produces a polynomial.
In mathematics and computer science, Horner's method (or Horner's scheme) is an algorithm for polynomial evaluation.Although named after William George Horner, this method is much older, as it has been attributed to Joseph-Louis Lagrange by Horner himself, and can be traced back many hundreds of years to Chinese and Persian mathematicians. [1]
In calculus, Taylor's theorem gives an approximation of a -times differentiable function around a given point by a polynomial of degree , called the -th-order Taylor polynomial. For a smooth function , the Taylor polynomial is the truncation at the order k {\textstyle k} of the Taylor series of the function.
This works well for every degree, but, in degrees higher than four, the resulting polynomial that has the s i as roots has a degree higher than that of the initial polynomial, and is therefore unhelpful for solving. This is the reason for which Lagrange's method fails in degrees five and higher.
It was explained above how R 1 (y), R 2 (y), and R 3 (y) can be used to find the roots of P(x) if this polynomial is depressed. In the general case, one simply has to find the roots of the depressed polynomial P(x − a 3 /4). For each root x 0 of this polynomial, x 0 − a 3 /4 is a root of P(x).