Search results
Results from the WOW.Com Content Network
Suppose X and Y are two independent tosses of a fair coin, where we designate 1 for heads and 0 for tails. Let the third random variable Z be equal to 1 if exactly one of those coin tosses resulted in "heads", and 0 otherwise (i.e., =). Then jointly the triple (X, Y, Z) has the following probability distribution:
The events are called pairwise independent if any two events in the collection are independent of each other, while mutual independence (or collective independence) of events means, informally speaking, that each event is independent of any combination of other events in the collection. A similar notion exists for collections of random variables.
The advantage of the penalty method is that, once we have a penalized objective with no constraints, we can use any unconstrained optimization method to solve it. The disadvantage is that, as the penalty coefficient p grows, the unconstrained problem becomes ill-conditioned - the coefficients are very large, and this may cause numeric errors ...
The simplex algorithm and its variants fall in the family of edge-following algorithms, so named because they solve linear programming problems by moving from vertex to vertex along edges of a polytope. This means that their theoretical performance is limited by the maximum number of edges between any two vertices on the LP polytope.
Two random variables and are independent if and only if , (,) = () for all ,. (For the simpler case of events, two events A {\displaystyle A} and B {\displaystyle B} are independent if and only if P ( A ∧ B ) = P ( A ) ⋅ P ( B ) {\displaystyle P(A\land B)=P(A)\cdot P(B)} , see also Independence (probability theory) § Two random variables .)
A product distribution is a probability distribution constructed as the distribution of the product of random variables having two other known distributions. Given two statistically independent random variables X and Y, the distribution of the random variable Z that is formed as the product = is a product distribution.
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
(That is, the two dice are independent.) If, however, the 1st die's result is a 3, and someone tells you about a third event - that the sum of the two results is even - then this extra unit of information restricts the options for the 2nd result to an odd number. In other words, two events can be independent, but NOT conditionally independent. [2]