enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multilayer perceptron - Wikipedia

    en.wikipedia.org/wiki/Multilayer_perceptron

    The MLP consists of three or more layers (an input and an output layer with one or more hidden layers) of nonlinearly-activating nodes. Since MLPs are fully connected, each node in one layer connects with a certain weight w i j {\displaystyle w_{ij}} to every node in the following layer.

  3. AlexNet - Wikipedia

    en.wikipedia.org/wiki/AlexNet

    FC = fully connected layer (with ReLU activation) Linear = fully connected layer (without activation) DO = dropout; It used the non-saturating ReLU activation function, which trained better than tanh and sigmoid. [1] Because the network did not fit onto a single Nvidia GTX 580 3GB GPU, it was split into two halves, one on each GPU. [1]: Section 3.2

  4. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    The layer that produces the ultimate result is the output layer. In between them are zero or more hidden layers. Single layer and unlayered networks are also used. Between two layers, multiple connection patterns are possible. They can be 'fully connected', with every neuron in one layer connecting to every neuron in the next layer.

  5. Layer (deep learning) - Wikipedia

    en.wikipedia.org/wiki/Layer_(Deep_Learning)

    The first type of layer is the Dense layer, also called the fully-connected layer, [1] [2] [3] and is used for abstract representations of input data. In this layer, neurons connect to every neuron in the preceding layer. In multilayer perceptron networks, these layers are stacked together.

  6. Feedforward neural network - Wikipedia

    en.wikipedia.org/wiki/Feedforward_neural_network

    The bottom layer of inputs is not always considered a real neural network layer. A multilayer perceptron (MLP) is a misnomer for a modern feedforward artificial neural network, consisting of fully connected neurons (hence the synonym sometimes used of fully connected network (FCN)), often with a nonlinear kind of activation function, organized ...

  7. Universal approximation theorem - Wikipedia

    en.wikipedia.org/wiki/Universal_approximation...

    In the mathematical theory of artificial neural networks, universal approximation theorems are theorems [1] [2] of the following form: Given a family of neural networks, for each function from a certain function space, there exists a sequence of neural networks ,, … from the family, such that according to some criterion.

  8. Neural network Gaussian process - Wikipedia

    en.wikipedia.org/wiki/Neural_network_Gaussian...

    An NNGP is derived which is equivalent to a Bayesian neural network with this fully connected architecture. Consider a fully connected artificial neural network with inputs , parameters consisting of weights and biases for each layer in the network, pre-activations (pre-nonlinearity) , activations (post-nonlinearity) , pointwise nonlinearity ...

  9. Types of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Types_of_artificial_neural...

    An autoencoder, autoassociator or Diabolo network [8]: 19 is similar to the multilayer perceptron (MLP) – with an input layer, an output layer and one or more hidden layers connecting them. However, the output layer has the same number of units as the input layer. Its purpose is to reconstruct its own inputs (instead of emitting a target value).